MHB Find Velocity of Recoiling Railcar with Conservation of Momentum

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Frictionless
Click For Summary
The discussion focuses on using conservation of momentum to determine the velocity of a recoiling railroad flatcar when two hobos jump off simultaneously. The derived formula for the car's velocity is v = (2m_h / (m_fc + 2m_h))u, where m_h is the mass of each hobo and m_fc is the mass of the flatcar. The momentum equation is set up as m_fc v = 2m_h (u - v), leading to the final solution after rearranging terms. The original question is confirmed to be from the book "Classical Mechanics" by John Taylor. The thread concludes with the problem being marked as solved.
Dustinsfl
Messages
2,217
Reaction score
5
Two hobos, each of mass $m_{\text{h}}$, are standing at one end of a stationary railroad flatcar with frictionless wheels and mass $m_{\text{fc}}$.
Either hobo can run to the other end of the flatcar and jump off with the same speed $u$ (relative to the car).

Use conservation of momentum to find the speed of the recoiling car if the two men run and jump off simultaneously.

Let $v$ be the velocity of the recoiling car.
Then
\begin{alignat*}{3}
m_{\text{fc}}v & = & 2m_{\text{h}}(u - v)\\
v & = & \frac{2m_{\text{h}}}{m_{\text{fc}}}(u - v)
\end{alignat*}

The solution is $v = \frac{2m_{\text{h}}}{2m_{\text{h}}+m_{\text{fc}}}u$.
How did they get that?
 
Mathematics news on Phys.org
Well, expanding the product gets us

$$m_{fc} v = 2m_h (u-v) = 2m_h u - 2m_h v,$$

and from that

$$m_{fc} v + 2m_h v = (m_{fc} + 2m_h) v = 2m_h u.$$

Finally,

$$v = \frac{2m_h}{m_{fc} + 2m_h} u.$$

If you don't mind me asking, is this question from the book Classical Mechanics by John Taylor? :D

Cheers.
 
It is from that book but I figured out what they did before you posted; hence, the post was marked solved before then.
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 17 ·
Replies
17
Views
692
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 9 ·
Replies
9
Views
2K