Finding an integral using trig. substitution

adam199
Messages
17
Reaction score
0
The integral from 0 to pi/2 of:

cos(t)/sqrt(1+sin^2(t)) dt

I'm supposed to use trig. substitution to find the solution. I started by using the formula a^2+x^2 to get x=atanx. In this case, sin(t)=(1)tan(θ), and so cos(t)dt=sec^2(θ)dθ and so I substituted this into the equation and got:

sec^2(θ)/sqrt(1+tan^2(θ)) -> sec^2(θ)/sqrt(sec^2(θ)) -> sec(θ)

Now, I have the integral of sec(θ)dθ, which equals ln abs(secθ+tanθ). When I take this integral at 0, it turns out to be 0, and so I'm left with the answer being solely the integral at pi/2. The problem is that the secant at pi/2 is infinity and so is the tangent at pi/2, and so the answer ends up being infinity, and this is apparently wrong.

Any help would be greatly appreciated.
 
Physics news on Phys.org
It would be better if you substitute sin(t)=x.
 
A trig substitution can be used after you use the substitution that Pranav-Arora recommends.
 
Pranav-Arora said:
It would be better if you substitute sin(t)=x.

I substituted sin(t)=x and got:

1/sqrt(1+x^2)dx

but when I use the trig. substitution with this integral, I come up with the same thing I had before. I don't think I understand how to do it substituting sin(t)=x and then using a trig. substitution, like Mark said.
 
Never mind. I eventually figured out how to translate the upper and lower limits of the integrand over to the final versions. Thanks.
 
Back
Top