- #1
Like Tony Stark
- 179
- 6
- Homework Statement
- The bodies shown in the picture spin on a horizontal plane, describing a circular path with constant acceleration. They're connected by ropes that resist ##1100 N## (each rope). Find the angular velocity when one of the ropes is cut.
- Relevant Equations
- Newton's equation
I wrote Newton's equations for each body (I took ##x## as the axis aligned with the tension)
##m_1##:
##x)f*_1 -T_1+T_2=0##
Where ##f*_1=\omega ^2 r_1##
##m_2##
##x)f*_2 -T_2=0##
##x)f*_2=T_2##
Where ##f*_2=\omega ^2 r_2##
I wrote that ##T_2=1100 N## and solved for ##\omega##, and I got ##\omega =20.56 \frac{rad}{s}##.
Then, I wrote ##T_2=f*_2## in the equation for ##m_1##, replace ##T_1=1100## and solved for ##\omega##. Doing so I found that ##\omega = 16.37 \frac{rad}{s}##.
So, the first rope will be cut with less angular velocity.
Is this right?
##m_1##:
##x)f*_1 -T_1+T_2=0##
Where ##f*_1=\omega ^2 r_1##
##m_2##
##x)f*_2 -T_2=0##
##x)f*_2=T_2##
Where ##f*_2=\omega ^2 r_2##
I wrote that ##T_2=1100 N## and solved for ##\omega##, and I got ##\omega =20.56 \frac{rad}{s}##.
Then, I wrote ##T_2=f*_2## in the equation for ##m_1##, replace ##T_1=1100## and solved for ##\omega##. Doing so I found that ##\omega = 16.37 \frac{rad}{s}##.
So, the first rope will be cut with less angular velocity.
Is this right?