The standard method of calculating area of ellipse:(adsbygoogle = window.adsbygoogle || []).push({});

[tex] \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 [/tex]

[tex] Area = \int_C -ydx \hbox { or } \int_C xdy [/tex]

It is more convient to use polar coordinate [itex] x=a cos \theta \; \hbox { and }\; y=b sin \theta [/itex]

[tex]dy = b cos \theta[/tex]

[tex] \hbox{ Using } \int_C xdy = \int_0^{2\pi} ab \; cos^2 \theta =\pi ab[/tex]

I am trying to solve in rectangular coordiantes where:

[tex] \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \Rightarrow \; y \;=\; ^+_- b\sqrt{1-\frac{x^2}{a^2} }[/tex]

Using [itex]\int_C -ydx [/itex]

[tex]\int_C -ydx = ^-_+ \int_{-a}^a b\sqrt{1-\frac{x^2}{a^2} } dx [/tex]

[tex] \hbox{ Let } \; sin \theta = \frac{x}{a} \Rightarrow dx = a cos \theta \hbox{ and } t= -\frac{\pi}{2} \hbox { to } \frac{\pi}{2}[/tex]

[tex]\int_C -ydx = ^-_+\int_{-a}^a b\sqrt{1-\frac{x^2}{a^2} } dx = ^-_+ab \int_{ -\frac{\pi}{2} }^{ \frac{\pi}{2}} cos^2 \theta d \theta = ^-_+\frac{ab}{2}\int_{ -\frac{\pi}{2} }^{ \frac{\pi}{2}} [1+cos (2\theta)] d \theta = ^-_+ \frac{\pi ab}{2}[/tex]

Notice the answer is half of using polar coordinate which show the correct answer. I understand there is + and - on the square root which I don't know how to incorporate in. How do I mathametically incorporate into the equation and get the correct answer?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Finding area of ellipse using line integral.

**Physics Forums | Science Articles, Homework Help, Discussion**