Finding center of mass of solid

Click For Summary
The solid B occupies the space above z=0 and between two spheres, with a density equal to the distance from the base. The mass of solid B is calculated to be 188π/3, and the center of mass in the x and y coordinates is at zero due to symmetry, leaving only the z-coordinate to determine. The integral for the z-coordinate of the center of mass is questioned, specifically why the density is integrated only once rather than multiplied by z again. A more efficient approach is suggested, involving the mass of thin circular disks at varying z-values to simplify the calculation. This method highlights the importance of recognizing symmetry in determining the center of mass.
Draconifors
Messages
17
Reaction score
0

Homework Statement


A solid B occupies the region of space above ##z=0## and between the spheres ##x^2 + y^2 + z^2 = 16## and ##x^2+y^2+(z-1^2) = 1##. The density of B is equal to the distance from its base, which is ##z = 0##. The mass of the solid B is ##\frac{188\pi}{3}##. Find the coordinates of the center of mass.

Homework Equations



Center of mass in z = ##\frac{1}{m} \iiint \limits_E z *\rho(x,y,z) dV##

The Attempt at a Solution



The center of mass in x and y is at coordinate 0 because of the symmetry of the domain, so there's only the z-value to calculate.

So my integral is ## \int_{0}^{2\pi} \int_{0}^{\frac{\pi}{2}} \int_{2\cos\phi}^{4} \rho \cos\phi * \rho \cos\phi * \rho^2\sin\phi d\rho d\phi d\theta##, then divided by the mass, but the answer sheet (which is a student's graded paper) has ##\rho\cos\phi * \rho^2\sin\phi## as the term to integrate, and therein lies my question: why are they only integrating z once? Don't we have z (the density) * z (the term already present in the center of mass equation) as the term to integrate?
 
Last edited:
Physics news on Phys.org
Draconifors said:

Homework Statement


A solid B occupies the region of space above ##z=0## and between the spheres ##x^2 + y^2 + z^2 = 16## and ##x^2+y^2+(z-1^2) = 1##. The density of B is equal to the distance from its base, which is ##z = 0##. The mass of the solid B is ##\frac{188\pi}{3}##. Find the coordinates of the center of mass.

Homework Equations



Center of mass in z = ##\frac{1}{m} \iiint \limits_E z *\ rho(x,y,z) dV##

The Attempt at a Solution



The center of mass in x and y is at coordinate 0 because of the symmetry of the domain, so there's only the z-value to calculate.

So my integral is ## \int_{0}^{2\pi} \int_{0}^{\frac{\pi}{2}} \int_{2\cos\phi}^{4} \rho \cos\phi * \rho \cos\phi * \rho^2\sin\phi d\rho d\phi d\theta##, then divided by the mass, but the answer sheet (which is a student's graded paper) has ##\rho\cos\phi * \rho^2\sin\phi## as the term to integrate, and therein lies my question: why are they only integrating z once? Don't we have z (the density) * z (the term already present in the center of mass equation) as the term to integrate?

You are doing it the hard way, given the symmetry you already noticed. Between ##z## and ##z + \Delta z## you have a thin circular disk centered at ##(0,0,z)## whose mass you can get because you can figure out the radius of the disc. (There will be two separate formulas for the radius, depending on whether the disc extends out to the lower surface or the upper surface). If ##m(z) \, dz## is the mass of the thin circular disc of thickness ##dz## at ##z##, the CM is just ##\frac{1}{M} \int_0^4 z\, m(z) \, dz,## where ##M## is the mass of the whole solid.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 34 ·
2
Replies
34
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K