Finding domain for when composite function is continuous

member 731016
Homework Statement
Please see below
Relevant Equations
Please see below
I am trying to find where ##h(x) =In{x^2}## is continuous on it's entire domain.

My reasoning is since natural log is defined for ##x > 0##, then the argument ##x^2## should be positive, ##x^2 > 0##, we can see without solving this equation that ##x ≠ 0## for this equation to be true, however, does someone please know how we could prove this by solving that equation for x?

My working is
##x > 0## (Taking square root of both sides of the equation)

Many thanks!
 
Physics news on Phys.org
ChiralSuperfields said:
Homework Statement: Please see below
Relevant Equations: Please see below

I am trying to find where ##h(x) =In{x^2}## is continuous on it's entire domain.

My reasoning is since natural log is defined for ##x > 0##, then the argument ##x^2## should be positive, ##x^2 > 0##, we can see without solving this equation that ##x ≠ 0## for this equation to be true, however, does someone please know how we could prove this by solving that equation for x?

My working is
##x > 0## (Taking square root of both sides of the equation)

Many thanks!
It is neither defined nor continuous at ##x=0.## It is continuous everywhere else. What do you use to prove continuity? E.g. it is differentiable at ##x\neq 0## and therewith continuous. Or you use a definition for continuity. There are a few, so which one do you use?
 
  • Like
Likes member 731016
ChiralSuperfields said:
I am trying to find where ##h(x) =In{x^2}## is continuous on it's entire domain.
There is no "##In()## function; i.e., starting with uppercase i. It's ##\ln()##, with a lowercase letter l (ell), short for logarithmus naturalis.
 
  • Like
Likes member 731016
Note that \ln x^2 = 2\ln |x|.
 
  • Like
Likes member 731016 and SammyS
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...

Similar threads

Back
Top