- #1
- 780
- 4
Homework Statement
Find the expected value of g(X) = Xk for the
a. gamma distribution
b. beta distribution
c. lognormal distribution
Homework Equations
gamma distribution: [itex] \frac{x^{\alpha -1}e^{ \frac{-x}{\beta}}}{ \Gamma (\alpha ) \beta ^{\alpha }} [/itex] with paramenter x>0
beta distribution: [itex] \frac{ \Gamma (\alpha + \beta) x^{\alpha -1}(1-x)^{\beta -1}}{\Gamma (\alpha ) \Gamma (\beta )} [/itex] with paramenter 0<x<1
lognormal distribution: [itex] ( \frac{1}{x \sigma \sqrt{2 \pi }}) e^{ \frac{-(lnx-\mu )^2}{2 \sigma y^2}} [/itex] with parameter x>0
[itex] E(X) = \int_{-\infty}^{\infty} \! xf(x) \mathrm{d} x [/itex]
The Attempt at a Solution
Well I can set up the integrals, but that gets me nowhere.
a. [itex] \int_0^{\infty} \! x^k \frac{x^{\alpha -1}e^{ \frac{-x}{\beta}}}{ \Gamma (\alpha ) \beta ^{\alpha }} \mathrm{d} x [/itex]
b. [itex] \int_0^1 \! x^k \frac{ \Gamma (\alpha + \beta) x^{\alpha -1}(1-x)^{\beta -1}}{\Gamma (\alpha ) \Gamma (\beta )} \mathrm{d} x [/itex]
c. [itex] \int_0^{\infty} \! x^k ( \frac{1}{x \sigma \sqrt{2 \pi }}) e^{ \frac{-(lnx-\mu )^2}{2 \sigma y^2}} \mathrm{d} x [/itex]