In no sense has your friend done it 'with respect to a basis' and you not. You have done exactly the same thing, you have put it together in matrix form, he has not, that is all. Neither of them has anything to do with picking a basis, or not picking one.
doing something in vector form is not the same as 'picking a basis'Ok, suppose I say consider the vector space of polynomials of degree 2 or less (this is 3d over a base field, say R, it doesn't matter). I describe a linear map that sends 1 to 2, x to 3x and x^2 to 4x^2, what are the eigenvalues? They are 2,3,4 with the obvious eigenvectors. Note how I've not given you a basis at all? I could ask you what the matrix corresponding to that transformation is with respect to the natural basis {1,x,x^2}, or to another basis such as {1-x, x-x^2, x^2-1}. The eigenvalues would remain unchanged.
I can equally ask you what the eigenvalues are for some square matrix without telling you anything about the underlying vector space or the basis of it I picked, right?