Finding Integer Solutions to $1998a+1996b+1=ab$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Integer
Click For Summary
SUMMARY

The equation \(1998a + 1996b + 1 = ab\) can be transformed into \(1997(a+b) = (a+1)(b-1)\). Given that \(1997\) is a prime number, either \(a+1\) or \(b-1\) must be a multiple of \(1997\). This leads to two cases: in Case 1, where \(a+1 = 1997k\), the solutions yield pairs \((-1, 1), (3993, 3995), (1995, -3986011), (1997, 3990007), (-3986013, 1997), (3990005, 1999)\). In Case 2, where \(b-1 = 1997k\), the same pairs are confirmed, resulting in six unique integer solutions.

PREREQUISITES
  • Understanding of integer equations and their solutions
  • Familiarity with prime numbers and their properties
  • Knowledge of algebraic manipulation techniques
  • Ability to analyze cases in mathematical proofs
NEXT STEPS
  • Study the properties of prime numbers and their implications in equations
  • Learn about algebraic manipulation techniques for solving integer equations
  • Explore case analysis in mathematical proofs and problem-solving
  • Investigate similar integer solution problems, such as Pell's equation
USEFUL FOR

Mathematicians, students studying number theory, and anyone interested in solving integer equations.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find all pairs $(a,\,b)$ of integers such that $1998a+1996b+1=ab$.
 
Mathematics news on Phys.org
anemone said:
Find all pairs $(a,\,b)$ of integers such that $1998a+1996b+1=ab$.

Hello.

Observations:

1º) ab=odd

2º) \dfrac{1998a+1996b}{ab-1}=1

2.1) ab \equiv{3 } \mod(4)<br /> <br /> 2.2) If \ a \equiv{1 } \mod(4) \rightarrow{}b \equiv{3 } \mod(4)<br /> <br /> 2.3) If \ a \equiv{3 } \mod(4) \rightarrow{}b \equiv{1 } \mod(4)1996(a+b)+2a+1=ab&amp;lt;br /&amp;gt; &amp;lt;br /&amp;gt; 1996=\dfrac{ab-2a-1}{a+b}=F(a,b).(*)&amp;lt;br /&amp;gt; &amp;lt;br /&amp;gt; If \ a=3 \ and \ b=2 \rightarrow{}F(a,b)=0&amp;lt;br /&amp;gt; &amp;lt;br /&amp;gt; If \ a=7 \ and \ b=5 \rightarrow{}F(a,b)=2&amp;lt;br /&amp;gt; &amp;lt;br /&amp;gt; If \ a=11 \ and \ b=9 \rightarrow{}F(a,b)=4&amp;lt;br /&amp;gt; &amp;lt;br /&amp;gt; If \ a=15 \ and \ b=13 \rightarrow{}F(a,b)=6&amp;lt;br /&amp;gt; &amp;lt;br /&amp;gt; ...&amp;lt;br /&amp;gt; &amp;lt;br /&amp;gt; ...&amp;lt;br /&amp;gt; &amp;lt;br /&amp;gt; Succession &amp;amp;quot;a&amp;amp;quot;: 4n-1&amp;lt;br /&amp;gt; &amp;lt;br /&amp;gt; Succession &amp;amp;quot;b&amp;amp;quot;: 4n-3&amp;lt;br /&amp;gt; &amp;lt;br /&amp;gt; Succession &amp;amp;quot;F(a,b)&amp;amp;quot;: 2n-2&amp;lt;br /&amp;gt; &amp;lt;br /&amp;gt; Therefore, (*):&amp;lt;br /&amp;gt; &amp;lt;br /&amp;gt; F(a,b)=1996 \rightarrow{}n=999&amp;lt;br /&amp;gt; &amp;lt;br /&amp;gt; a=4*999-1=3995&amp;lt;br /&amp;gt; &amp;lt;br /&amp;gt; b=4*999-3=3993
&amp;lt;br /&amp;gt; &amp;lt;br /&amp;gt; Regards.
 
we have

$ab-1998a - 1996 b = 1$
add 1998 * 1996 on both sides
$ab - 1998a - 1996 b + 1998 * 1996 = (1998 * 1996) +1$
= $(1997+1)(1997-1) + 1$
= $1997 ^2$
or $(b-1998)(a- 1996) = 1997^2$
as 1997 is prime

so $(b- 1998, a - 1996) = ( 1997,1997)$
OR $(1 , 1997^2)$
OR $( 1997^2,1)$
OR $( -1997,-1997)$
OR $( -1, -1997^2)$
OR $( -1997^2,-1)$

rest is arithmetic
 
anemone said:
Find all pairs $(a,\,b)$ of integers such that $1998a+1996b+1=ab$.
[sp]Write the equation as $1997(a+b) = (a+1)(b-1)$. Since $1997$ is prime, it follows that either $a+1$ or $b-1$ must be a multiple of $1997$.

Case 1. If $a+1 = 1997k$ then (after cancelling $1997$ from both sides) the equation becomes $1997k-1+b = k(b-1)$, from which $k = \dfrac{1-b}{1998-b} = 1 - \dfrac{1997}{1998-b}.$ Again using the fact that $1997$ is prime, we see that $1998-b$ must be $\pm1$ or $\pm 1997$. That gives four values for $b$, namely $1,\ 1997,\ 1999,\ 3995$. The corresponding values for $k$ are $0,\ -1996,\ 1998,\ 2$, with $a = -1,\ -3986013,\ 3990005,\ 3993$.

Case 2. If $b-1 = 1997k$ then the equation becomes $a + 1997k + 1 = k(a+1)$, from which $k = \dfrac{a+1}{a-1996} = 1 - \dfrac{1997}{1996-a}.$ Thus $a-1996$ must be $\pm1$ or $\pm 1997$. That gives four values for $a$, namely $-1,\ 1995,\ 1997,\ 3993$. The corresponding values for $k$ are again $0,\ -1996,\ 1998,\ 2$, with $b = 1,\ -3986011,\ 3990007,\ 3995$.

Two of those solutions appear in both sets, so there are six solutions altogether, namely $(a,b) = (-1,1),\ (3993,3995),\ (1995,-3986011),\ (1997,3990007),\ (-3986013,1997),\ (3990005,1999).$[/sp]

Edit. kaliprasad's method is neater, avoiding the duplicate solutions that I had.
 
Last edited:
I had solved it at

http://mathhelpboards.com/challenge-questions-puzzles-28/find-integer-solutions-challenge-5837.html
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K