Finding Integer Solutions to $1998a+1996b+1=ab$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Integer
Click For Summary

Discussion Overview

The discussion revolves around finding all pairs of integers \((a, b)\) that satisfy the equation \(1998a + 1996b + 1 = ab\). The scope includes mathematical reasoning and problem-solving techniques related to integer solutions.

Discussion Character

  • Mathematical reasoning
  • Exploratory

Main Points Raised

  • Some participants propose rewriting the equation as \(1997(a+b) = (a+1)(b-1)\) and note that since \(1997\) is prime, either \(a+1\) or \(b-1\) must be a multiple of \(1997\).
  • In Case 1, if \(a+1 = 1997k\), participants derive a relationship leading to four potential values for \(b\): \(1, 1997, 1999, 3995\), and corresponding values for \(k\) and \(a\).
  • In Case 2, if \(b-1 = 1997k\), the equation leads to four potential values for \(a\): \(-1, 1995, 1997, 3993\), with corresponding values for \(k\) and \(b\).
  • Participants identify that two solutions appear in both cases, resulting in a total of six distinct solutions: \((-1,1), (3993,3995), (1995,-3986011), (1997,3990007), (-3986013,1997), (3990005,1999)\).
  • A later reply mentions that another participant's method is neater and avoids duplicate solutions.

Areas of Agreement / Disagreement

Participants generally agree on the approach to solving the equation and the identification of potential solutions, but there is no consensus on the neatness or efficiency of the methods used, as indicated by the mention of a different approach.

Contextual Notes

The discussion includes various assumptions about the properties of prime numbers and the implications of rewriting the equation, but these assumptions are not universally accepted or verified within the thread.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find all pairs $(a,\,b)$ of integers such that $1998a+1996b+1=ab$.
 
Mathematics news on Phys.org
anemone said:
Find all pairs $(a,\,b)$ of integers such that $1998a+1996b+1=ab$.

Hello.

Observations:

1º) ab=odd

2º) \dfrac{1998a+1996b}{ab-1}=1

2.1) ab \equiv{3 } \mod(4)<br /> <br /> 2.2) If \ a \equiv{1 } \mod(4) \rightarrow{}b \equiv{3 } \mod(4)<br /> <br /> 2.3) If \ a \equiv{3 } \mod(4) \rightarrow{}b \equiv{1 } \mod(4)1996(a+b)+2a+1=ab&amp;lt;br /&amp;gt; &amp;lt;br /&amp;gt; 1996=\dfrac{ab-2a-1}{a+b}=F(a,b).(*)&amp;lt;br /&amp;gt; &amp;lt;br /&amp;gt; If \ a=3 \ and \ b=2 \rightarrow{}F(a,b)=0&amp;lt;br /&amp;gt; &amp;lt;br /&amp;gt; If \ a=7 \ and \ b=5 \rightarrow{}F(a,b)=2&amp;lt;br /&amp;gt; &amp;lt;br /&amp;gt; If \ a=11 \ and \ b=9 \rightarrow{}F(a,b)=4&amp;lt;br /&amp;gt; &amp;lt;br /&amp;gt; If \ a=15 \ and \ b=13 \rightarrow{}F(a,b)=6&amp;lt;br /&amp;gt; &amp;lt;br /&amp;gt; ...&amp;lt;br /&amp;gt; &amp;lt;br /&amp;gt; ...&amp;lt;br /&amp;gt; &amp;lt;br /&amp;gt; Succession &amp;amp;quot;a&amp;amp;quot;: 4n-1&amp;lt;br /&amp;gt; &amp;lt;br /&amp;gt; Succession &amp;amp;quot;b&amp;amp;quot;: 4n-3&amp;lt;br /&amp;gt; &amp;lt;br /&amp;gt; Succession &amp;amp;quot;F(a,b)&amp;amp;quot;: 2n-2&amp;lt;br /&amp;gt; &amp;lt;br /&amp;gt; Therefore, (*):&amp;lt;br /&amp;gt; &amp;lt;br /&amp;gt; F(a,b)=1996 \rightarrow{}n=999&amp;lt;br /&amp;gt; &amp;lt;br /&amp;gt; a=4*999-1=3995&amp;lt;br /&amp;gt; &amp;lt;br /&amp;gt; b=4*999-3=3993
&amp;lt;br /&amp;gt; &amp;lt;br /&amp;gt; Regards.
 
we have

$ab-1998a - 1996 b = 1$
add 1998 * 1996 on both sides
$ab - 1998a - 1996 b + 1998 * 1996 = (1998 * 1996) +1$
= $(1997+1)(1997-1) + 1$
= $1997 ^2$
or $(b-1998)(a- 1996) = 1997^2$
as 1997 is prime

so $(b- 1998, a - 1996) = ( 1997,1997)$
OR $(1 , 1997^2)$
OR $( 1997^2,1)$
OR $( -1997,-1997)$
OR $( -1, -1997^2)$
OR $( -1997^2,-1)$

rest is arithmetic
 
anemone said:
Find all pairs $(a,\,b)$ of integers such that $1998a+1996b+1=ab$.
[sp]Write the equation as $1997(a+b) = (a+1)(b-1)$. Since $1997$ is prime, it follows that either $a+1$ or $b-1$ must be a multiple of $1997$.

Case 1. If $a+1 = 1997k$ then (after cancelling $1997$ from both sides) the equation becomes $1997k-1+b = k(b-1)$, from which $k = \dfrac{1-b}{1998-b} = 1 - \dfrac{1997}{1998-b}.$ Again using the fact that $1997$ is prime, we see that $1998-b$ must be $\pm1$ or $\pm 1997$. That gives four values for $b$, namely $1,\ 1997,\ 1999,\ 3995$. The corresponding values for $k$ are $0,\ -1996,\ 1998,\ 2$, with $a = -1,\ -3986013,\ 3990005,\ 3993$.

Case 2. If $b-1 = 1997k$ then the equation becomes $a + 1997k + 1 = k(a+1)$, from which $k = \dfrac{a+1}{a-1996} = 1 - \dfrac{1997}{1996-a}.$ Thus $a-1996$ must be $\pm1$ or $\pm 1997$. That gives four values for $a$, namely $-1,\ 1995,\ 1997,\ 3993$. The corresponding values for $k$ are again $0,\ -1996,\ 1998,\ 2$, with $b = 1,\ -3986011,\ 3990007,\ 3995$.

Two of those solutions appear in both sets, so there are six solutions altogether, namely $(a,b) = (-1,1),\ (3993,3995),\ (1995,-3986011),\ (1997,3990007),\ (-3986013,1997),\ (3990005,1999).$[/sp]

Edit. kaliprasad's method is neater, avoiding the duplicate solutions that I had.
 
Last edited:
I had solved it at

http://mathhelpboards.com/challenge-questions-puzzles-28/find-integer-solutions-challenge-5837.html
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K