MHB Finding Joint Density for Minimum of Independent Variables: $\min(A,B)$ Formula

  • Thread starter Thread starter Jason4
  • Start date Start date
  • Tags Tags
    Density Joint
Jason4
Messages
27
Reaction score
0
I have:

$f_A=\lambda e^{-\lambda a}$

$f_B=\mu e^{-\mu b}$

I need to find the density for $C=\min(A,B)$

($A$ and $B$ are independent).

Is this correct or utterly wrong?

$f_C(c)=f_A(c)+f_B(c)-f_A(c)F_B(c)-F_A(c)f_B(c)$

$=\lambda e^{-\lambda c}+\mu e^{-\mu c}-\lambda e^{-\lambda c}(1-e^{-\mu c})-(1-e^{-\lambda c})\mu e^{-\mu c}$

$=\lambda e^{-\lambda c}e^{-\mu c}+\mu e^{-\lambda c}e^{-\mu c}$

$=2(\lambda+\mu)e^{-c(\lambda+\mu)}$
 
Last edited:
Physics news on Phys.org
Jason said:
I have:

$f_A=\lambda e^{-\lambda a}$

$f_B=\mu e^{-\mu b}$

I need to find the density for $C=\min(A,B)$

($A$ and $B$ are independent).

Is this correct or utterly wrong?

$f_C(c)=f_A(c)+f_B(c)-f_A(c)F_B(c)-F_A(c)f_B(c)$

You need to explain where this comes from.

Because we have two cases; \( A<B\) and \(A\ge B\) I would start:

$ \large f_C(c)=f_A(c)Pr(B>c|A=c)+Pr(A>c|B=c)) $

then independence reduces this to:

$ \large f_C(c)=f_A(c)Pr(B>c)+f_B(c)Pr(A>C) $

so:

\( \large f_C(c)=f_A(c)(1-F_B(c))+f_B(c)(1-F_A(c) \))

CB
 
Last edited:
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top