MHB Finding $|k|$ of the Polynomial $x^3-kx+25$

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Polynomial
AI Thread Summary
The polynomial \(x^3 - kx + 25\) has three real roots, with two roots summing to 5, leading to the conclusion that \(a = -5\). Using Vieta's formulas, it is determined that \(k = 20\) after substituting into the polynomial equation. An assumption that the other two roots are complex leads to a contradiction, reinforcing that all roots must be real. The calculations confirm that \(k = 20\) is the only valid solution. The discussion clarifies that there was a typographical error regarding the sign of \(k\), which has been corrected.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
The polynomial $x^3-kx+25$ has three real roots. Two of these root sum to 5. What is $|k|$?
 
Mathematics news on Phys.org
[sp]
Let the roots be a, b, and c.

Then by Vieta's formula
a + b + c = 0

Take b + c = 5. Then a = -5,

So we know that
[math]a^3 - k a + 25 = 0[/math]

[math](-5)^3 - k ( -5 ) + 25 = 0[/math]

k = 20

Note that we haven't used the condition that all roots are real, so let's assume that b and c are complex and that this gives a contradiction.

We know that a = -5 and that b and c are, by assumption, complex. So let b = m + in and c = 5 - (m + in).

The other Vieta formula says that
abc = 25

$$(-5) ( m + in) ( 5 - (m + in) ) = 25$$

[math](-m^2 + 5m + n^2) + (5n - 2mn)i = -5[/math]

Using the second term
$$5n - 2mn = 0$$

So n = 0 or m = 5/2.

Let m = 5/2 and put it into the first term:
[math]-m^2 + 5m + n^2 = -5[/math]

[math]- \left ( \dfrac{5}{2} \right ) ^2 + 5 \left ( \dfrac{5}{2} \right ) + n^2 = -5[/math]

[math]n^2 = -\dfrac{45}{4}[/math]
which says that [math]n^2 < 0[/math], which is impossible.

Thus n = 0 and the solution for k = 20 stands as the only possible k.
[/sp]
-Dan
 
Above is good method and here is my
as $x^2$ term is zero and sum of 2 roots is 5 so $3^{rd}$ root is -5 so we have the product of 2 roots = 5 (as product of all roots -25)

$x^3-xk+25 = (x+5)(x^2- 5x + 5) = x^3 -5x^2+5x + 5x^2 - 25 x + 25 = x^3 -20x + 25$

comparing with given equation we have k = 20 and hence $| k | = 20$

we have to check that $x^2-5x+5=0$ is having real roots or not. We have discriminant = $5^2-20= 5 >0 $ so real roots

so ans 20
 
Last edited:
[sp]
There's a typo.

[math]x^3 - k x + 25 = x^3 - 20 x + 25 \implies k = 20[/math], not -20.
[/sp]
-Dan
 
topsquark said:
[sp]
There's a typo.

[math]x^3 - k x + 25 = x^3 - 20 x + 25 \implies k = 20[/math], not -20.
[/sp]
-Dan
Thanks I have done the needful in line for the flow
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top