(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

A 1.00-kg glider attached to a spring with a force constant 16.0 N/m oscillates on a frictionless, horizontal air track. At t = 0, the glider is released from rest at x = -2.50 cm (that is, the spring is compressed by 2.50 cm).

Find the position, velocity, and acceleration as functions of time. (Where position is in m, velocity is in m/s, acceleration is in m/s2, and t is in s. Use the following as necessary: t.)

2. Relevant equations

x(t)=Acos(ωt+ φ)

v(t)= dx/dt

a(t)=d^2x/dt^2

ω=√(k/m)

3. The attempt at a solution

I know that the answer is x(t)= .025cos(4t+π) (then taking the derivatives respectively). What I can't figure out however is why φ=π. I thought if the particle is at its maximum position (x=A) at t=0, φ=0?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Finding postion, velocity and accelration as functions of time (SHM)

**Physics Forums | Science Articles, Homework Help, Discussion**