I Finding the dependence of maximum vertex degree on k-colorability

Superyoshiom
Messages
29
Reaction score
0
How do we describe a construction of a 2-colorable graph where the degree of every vertex is greater than or equal to (|V|-1)/2? Based on that, what can be said about the dependence of maximum vertex-degree on k-colorability of a graph?

My first thought is that in order for a vertex to connect to every single other vertex on a graph, it's degree would have to be |V|-1. But since we're looking at half of that in (|V|-1)/2, it would only be connected to half the vertices in the graph, so if this was the case for all vertices in G we'd be constructing a 2-colorable bipartite graph (is my thought).

I'm not too sure how to deal with the second part, however. I know that in a graph there can be n different colors for k given n vertices in a row and we need to add colors whenever there are adjacent vertices, but I can't figure out how the maximum vertex-degree in particular effects how many colors we can use for a graph.
 
Mathematics news on Phys.org
Superyoshiom said:
we'd be constructing a 2-colorable bipartite graph
Right, but you can be a bit more precise. Since it is 2-colorable, it is bipartite. What are the possibilities for the numbers in each part? Does it need to be complete?
Superyoshiom said:
Based on that, what can be said about the dependence of maximum vertex-degree
The question seems garbled. The first part concerned the minimum vertex degree, (n-1)/2, not the maximum.
As for the first part, you can cluster the vertices according to colour, with each vertex only allowed to connect into other clusters. But if you make one cluster consist of a single vertex then it can have degree n-1, so it doesn’t say anything about the max vertex degree. I would interpret it as asking how high the minimum vertex degree can be.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top