Finding the flow of a vector field

Click For Summary
The discussion revolves around finding the flow of a vector field defined by the system of ordinary differential equations (ODEs) dx/dt = y and dy/dt = x. Participants note that the vector field exhibits symmetry in the sets where x equals y. Various attempts to solve the equations lead to solutions that do not simultaneously satisfy the initial conditions. The conversation highlights the importance of including all possible solutions, including negative terms, to accurately represent the flow. Ultimately, the use of hyperbolic functions is suggested as a viable method for parameterizing the solution to the ODEs.
docnet
Messages
796
Reaction score
489
Homework Statement
Find the flow of the vector field V(x, y) = (y, x)
Relevant Equations
V(x, y) = (y, x)
Screen Shot 2020-10-24 at 2.34.40 AM.png


In part c, plotting the vector field shows the vector field is symmetric in x and y in the sets {x=y}.

Screen Shot 2020-10-24 at 2.36.02 AM.png

in {x=y}, the variables can be interchanged and the solution becomes

x = x°e^t
y = y°e^tHowever, these solutions do not work for anywhere except {x=y} and don't satisfy dx/dt = y and dy/dt = x

yX+xY corresponds to the system of ODES

dx/dt = y
dy/dt = xWe eliminate dt from the above system to obtain the following solution to the system of ODES

(x^2)/2 - (y^2)/2=c

However I believe we cannot parametrize this equation to obtain the flow of the vector field.

What I did find from algebraic manipulations is

x = (x°e^t)/2 + (y°e^t)/2 + x°/2 - y°/2
y = (x°e^t)/2 + (y°e^t)/2 - x°/2 + y°/2

which satisfies the values t = 0, x = x°, y= y°

We tried to find the flow by t and s and the calculator tells us this is the wrong answer. Any ideas at all would be appreciated. thank you.
 
Physics news on Phys.org
If ##dx/dt=y## and ##dy/dt=x##, then you can substitute one equation into the other to find ##y=dx/dt=d^2y/dt^2## and similarly ##x=dx^2/dt^2.## Then solve and use initial conditions.
 
Infrared said:
If ##dx/dt=y## and ##dy/dt=x##, then you can substitute one equation into the other to find ##y=dx/dt=d^2y/dt^2## and similarly ##x=dx^2/dt^2.## Then solve and use initial conditions.

Thank you for the advice. We tried this method and obtained the following solutions.

x=x°e^t + c te^t
y=y°e^t + c te^t

We found that the constant c can be set to x°-y° or y°-x° to satisfy dx/dt=y or dy/dt=x. Yet, neither choice satisfies the two initial conditions at the same time.

This is a strange situation because the equations say c = x°-y° and c = y°-x°.
 
docnet said:
Thank you for the advice. We tried this method and obtained the following solutions.

x=x°e^t + c te^t
y=y°e^t + c te^t

The solution of \ddot x = x is <br /> x = A \cosh t + B \sinh t and its derivative is <br /> \dot x = A\sinh t + B \cosh t. Since \cosh(0) = 1 and \sinh(0) = 0 it is easy to impose the initial conditions.

We found that the constant c can be set to x°-y° or y°-x° to satisfy dx/dt=y or dy/dt=x. Yet, neither choice satisfies the two initial conditions at the same time.

This is a strange situation because the equations say c = x°-y° and c = y°-x°.

There are two dependent variables Therefore there are two constants of integration. They don't have to be equal.
 
docnet said:
yX+xY corresponds to the system of ODES

dx/dt = y
dy/dt = x

We eliminate dt from the above system to obtain the following solution to the system of ODES

(x^2)/2 - (y^2)/2=c

However I believe we cannot parametrize this equation to obtain the flow of the vector field.
You might as well absorb the factor of 1/2 into the constant ##c## so ##x^2-y^2=c##. Depending on the sign of ##c##, you can parameterize using the hyperbolic functions. If ##c>0##, you can write
\begin{align*}
x &= \sqrt{c} \cosh (t-t_0) \\
y &= \sqrt{c} \sinh (t-t_0)
\end{align*} If ##c<0##, you'd need to swap ##\cosh## and ##\sinh## and stick a minus sign in the square root.

Note this is the same solution as the one @pasmith gives in post #4.

What I did find from algebraic manipulations is

x = (x°e^t)/2 + (y°e^t)/2 + x°/2 - y°/2
y = (x°e^t)/2 + (y°e^t)/2 - x°/2 + y°/2

which satisfies the values t = 0, x = x°, y= y°
You seem to be losing solutions along the way as there should be ##e^{-t}## terms as well. I'm guessing when you took a square root somewhere, you neglected the negative solution.
 
Screen Shot 2020-10-24 at 3.39.23 PM.png


Thank you Pasmith and vela, you are right, this method solves the problem!

using the hyperbolic solution to second order odes, I found the solution

x= x cosh t + y sinh t
y= x sinh t + y cosh t

here is a graph of the flow when x = -1 and y = -2 parametrized by t.

Screen Shot 2020-10-24 at 3.39.05 PM.png


Screen Shot 2020-10-24 at 3.39.09 PM.png


vela, you are right, there are e^-t terms that I missed as well. I was tired after trying for many hours to solve this problem.
 
Last edited:
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

Replies
3
Views
2K
Replies
12
Views
2K
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
5
Views
2K