Finding the Fourier Coefficients of a Function

Click For Summary

Homework Help Overview

The discussion revolves around finding the Fourier coefficients of the function \( f(x) = x^2 \) defined on the interval \([0,1]\). Participants explore the evaluation of integrals related to Fourier coefficients and the implications of changing the domain for Fourier series representation.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning

Approaches and Questions Raised

  • Participants discuss the evaluation of the integral for the Fourier coefficients, with some suggesting integration by parts as a method. There is also a question about changing the domain from \([-π, π]\) to \([0, 1]\) and whether this affects the Fourier series representation. The original poster expresses confusion about the relationship between the two domains and the nature of the series being computed.

Discussion Status

The discussion is active, with participants providing guidance on the use of integration by parts. There are multiple interpretations regarding the type of Fourier series being sought (cosine series versus general Fourier series), and participants are clarifying these distinctions. The original poster is seeking further understanding of these concepts.

Contextual Notes

There is a mention of the original problem's requirements, which may not explicitly state whether a Fourier cosine series or a full Fourier series is needed. The original poster also notes a lack of familiarity with Fourier series, which may influence their questions and understanding.

docnet
Messages
796
Reaction score
486
Homework Statement
Find the Fourier Coefficient
Relevant Equations
##f:[0,1]\rightarrow \mathbb{R}## given by
$$f(x)=x^2$$
Consider the function ##f:[0,1]\rightarrow \mathbb{R}## given by
$$f(x)=x^2$$

(1) The Fourier coefficients of ##f## are given by
$$\hat{f}(0)=\int^1_0x^2dx=\Big[\frac{x^3}{3}\Big]^1_0=\frac{1}{3}$$
$$\hat{f}(k)=\int^1_0x^2e^{-2\pi i k x}dx$$

Can this second integral be evaluated?
 
Physics news on Phys.org
Why couldn't it be? I don't see what potential problem you're thinking of.
 
  • Like
Likes   Reactions: docnet
Integrate by parts twice.
 
  • Like
Likes   Reactions: Delta2 and docnet
@vela @pasmith thank you. Using integration by parts makes perfect sense for the integral.

I am confused about something else.

so... I know how to find the Fourier series of ##f(x)=x^2## over ##[-\pi,\pi]##, and I want to change the domain to ##[0,1]##. Is it okay to do a change of variables using ##x=\pi(2y-1)## and compute the Fourier series in ##y## space?

Not having studied the Fourier series in detail, I am asking silly questions. Could one say that ##[0,1] \subset [-\pi,\pi]## so the series over ##[-\pi,\pi]## contains the Fourier series for the other?

edit: the change of variables using ##x=\pi(2y-1)## scales the domain.
 
Last edited:
Solution attempt:

Determining the Fourier series of a function ##f(x):[0,1]\rightarrow \mathbb{R}##

(1) Theorem: For an even function ##f(x)## over the symmetric range ##[-\pi,\pi]##, the Fourier series is given by
$$f(x)\sim \frac{a_0}{2}+\sum_{n=1}^\infty a_k cos(kx)$$ where $$a_k=\frac{2}{\pi}\int^\pi_0f(x)cos(kx)dx$$
For ##f(x)=x^2## we compute the Fourier coefficients $$\int^\pi_0x^2dx=\Big[\frac{x^3}{3}\Big]^\pi_0=\boxed{a_0=\frac{\pi^2}{3}}$$
$$a_k=\int^\pi_0x^2cos(kx)dx=\frac{2}{\pi}\Big[\frac{2xcos(kx)}{k^2}+\Big(\frac{x^2}{k}-\frac{2}{k^3}\Big)sin(kx)\Big]^\pi_0$$
$$=\frac{2}{\pi}\Big[\frac{2xcos(kx)}{k^2}\Big]_0^\pi=\frac{4cos(kx)}{k^2}\Rightarrow \boxed{a_k=(-1)^k\frac{4}{k^2}}$$
(2) The Fourier series of ##x^2## is
$$\boxed{x^2\sim \frac{\pi^2}{3}+\sum^\infty_{n=1}(-1)^k\frac{4}{k^2}cos(kx)}$$
 
  • Like
Likes   Reactions: Delta2
You found the series for ##f: [-\pi, \pi] \to \mathbb{R}##.

Did the original problem ask you to find the Fourier cosine series, in which case you would extend ##f## so you have an even function, or the Fourier series?
 
  • Like
Likes   Reactions: docnet
vela said:
You found the series for ##f: [-\pi, \pi] \to \mathbb{R}##.

Did the original problem ask you to find the Fourier cosine series, in which case you would extend ##f## so you have an even function, or the Fourier series?
Hi vela,

I'm sorry but you should to explain like I'm 5 years old what the difference is?

Thanks - newb
 
Which of the following are you being asked to find the Fourier series of? If the question asks for the Fourier series of the function you provided in the original post, I'd interpret that as the first one. If, however, you're asked to find the Fourier cosine series, then it's understood that you extend the function so that it's an even function and find the Fourier series of that.
fourier.png

or
fourier2.png
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K