Finding the graph formula with know points and other equation.

Pharrahnox
Messages
106
Reaction score
0
I have an equation for determining the acceleration of an object being propelled by a constant power source, that is affected by air resistance:

a = \frac{P}{mv}-\frac{C<sub>D</sub>pAv<sup>2</sup>}{2m}

Since F = \frac{P}{v}

I am trying to graph this as a velocity-time graph, however, I don't know how to do it. There is no time variable that I can replace with x, and the y-value (velocity) is mixed into the equation already.

I remember the equation given to me for a similar sort of thing, without air resitance, but instead just a constant friction force, that was something like this:

y = k(1-e-ax)

Where k is a constant, which is the maximum speed, and a is another constant which represents the force of air resistance.

The maximum speed in this case is \sqrt[3]{\frac{2P}{C<sub>D</sub>pA}}, so the equation would be something like:

y = \sqrt[3]{\frac{2P}{C<sub>D</sub>pA}}(1-e-ax)

But that's as far as I've gotten. By the use of iteration, I have determined the velocity at several different times, here's a few, just in case it helps:

(0,0) (25,83.4762) (50,118.1195) (75,126.1601) (100,127.7624) (125,128.0709)

This is for variables of values: p = 0.001, A = 1900.933, m = 1900.933, P = 1*106
and CD = 0.5

Any help would be greatly appreciated, and if you need any more information, just let me know.EDIT: the equations don't seem to be formatting correctly, so I'll redo them down here:

a = P/v - (Cd*p*A*v^2) /2
F = P/v
max speed = ( (2*P) / (Cd*p*A) )^1/3
y = ( (2*P) / (Cd*p*A) )^1/3 * (1 - e^-ax)
 
Last edited:
Mathematics news on Phys.org
Given ##a=\frac{dv}{dt}##, what you have is a separable ordinary differential equation \frac{dv}{dt}=\frac{\alpha}{v}-\beta v^2 where ##\alpha=\frac{P}{m}## and ##\beta=\frac{C_DpA}{2m}## have been substituted to make the equation (slightly) more manageable. Hopefully that's enough to get you going.

I'm not sure where you got your force equation. Are you not using ##F=ma##? Furthermore, I don't know that it's even useful here.

I reckon it's doubtful that the equation that works in a constant friction situation applies here. So you're likely barking up the wrong tree there.
 
I have never done differential equations before, and I tried to just find the anti-derivative, but my teacher said that I had done it incorrectly, as I differentiated dv instead of dt, or the other way around. Anyway, here is what I got:

v = (Pt/m)*ln(|v|)-(CDpAv3t)/(6m)+c

Unfortunately from there, if it is correct, I don't know where to go - how to get v by itself without v on the other side.

What do I do from here, or from the start if that isn't correct?

Thanks for your response.
 
Last edited:
Pharrahnox said:
the equations don't seem to be formatting correctly

I think this is due to your using the SUB and SUP tags instead of the usual LaTex notation.

a = \frac{P}{v} - \frac{ (C_d p A v^2) }{2}
 
Oh ok, I'll give it a go:

a = (\frac{Pt}{m})ln(|v|)-\frac{C_{D}pAv^{3}t}{6m}

Seems to work, thanks.
 
Does anyone have any advice on what I should do to get time into the equation, without velocity on both sides? I don't even know what to type into google to find information on it. Any information would be much appreciated.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top