Finding the Matrix of a Linear Transformation

Click For Summary
To find the matrix of the linear transformation T: R4→R2, the standard basis for R4 is utilized, which includes vectors like (1,0,0,0). The transformation values for the basis vectors are known, and using linearity, the transformation for other basis vectors can be derived. For instance, T(0,1,0,0) is calculated by subtracting T(1,0,0,0) from T(1,1,0,0), yielding T(0,1,0,0) = (2,3). This process must be repeated for the remaining basis vectors to fully determine the transformation matrix. The discussion emphasizes the importance of linear combinations and the definition of linearity in finding the matrix representation.
bakin
Messages
55
Reaction score
0

Homework Statement



Assume that T defines a linear transformation and use the given information to find the matrix of T
T: R4-->R2
such that T(1,0,0,0)=(3,-2), T(1,1,0,0)=(5,1), T(1,1,1,0)=(-1,0), and T(1,1,1,1)=(2,2)

Homework Equations


The Attempt at a Solution



I think I need to use/find the standard basis for R4, but not really sure.

Thanks for the help.
 
Physics news on Phys.org
The standard basis for R^4 is (1,0,0,0), (0,1,0,0), (0,0,1,0), and (0,0,0,1). The idea of this problem is that once you know where the basis elements go, you can uniquely determine what the matrix is (using methods described in your textbook!)

So you need to find T(1,0,0,0), which you already know, along with T(0,1,0,0), T(0,0,1,0), and T(0,0,0,1). How would you find these? (Hint: Use the definition of linearity.)
 
Do I set them as linear combinations of each other? [a b c d]=c1v1+c2v2+c3v3+c4v4 ?
 
OIWQJFEOIWJQEF just figured it out.

for example, in order to find (0,1,0,0), we can say that's

(0,1,0,0) = a(1,1,0,0)-b(1,0,0,0) if we set a=b=1

T(0,1,0,0)=T(1,1,0,0)-T(1,0,0,0)
T(0,1,0,0)=(5,1)-(3,-2)
T(0,1,0,0)=(2,3) which is indeed the answer provided. I just have to do this for the rest of the vectors.thanks for the help :smile:
 
Last edited:
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 22 ·
Replies
22
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K