MHB Finding this recurrence relation for stuck-together right-angle triangles

AI Thread Summary
The discussion focuses on deriving a recurrence relation for the coordinates of right-angle triangles given initial conditions and arbitrary angles. The relationship is expressed as x_{n+1} = x_n * cos(θ_n) - y_n * sin(θ_n) and y_{n+1} = x_n * sin(θ_n) + y_n * cos(θ_n), which utilizes trigonometric identities. A participant also mentions an alternative relation involving tangent, suggesting a potential connection or difference in approach. The conversation emphasizes the importance of understanding the geometric patterns and trigonometric foundations behind these relationships. Ultimately, the goal is to clarify and derive the correct recurrence relation based on the provided conditions and angles.
nacho-man
Messages
166
Reaction score
0
Given the image:
http://i.stack.imgur.com/EJ3ax.jpgand that $x_0 = 1, y_0=0$ and $\text{angles} \space θ_i
, i = 1, 2, 3, · · ·$ can be arbitrarily picked.

How can I derive a recurrence relationship for $x_{n+1}$ and $x_n$?

I actually know what the relationship is, however, don't know how to derive it.

My first attempt was to try and see some geometrical pattern, so I did the following:

http://i.stack.imgur.com/4BNyq.jpg

But still couldn't find a derivation.

Although it is obvious to see that $x_0 = x_1$

so for $n = 0$

We have $x_{1} = x_{0}+0 $

any tips, hints or help very much appreciated.
 
Mathematics news on Phys.org
nacho said:
Given the image:
http://i.stack.imgur.com/EJ3ax.jpgand that $x_0 = 1, y_0=0$ and $\text{angles} \space θ_i
, i = 1, 2, 3, · · ·$ can be arbitrarily picked.

How can I derive a recurrence relationship for $x_{n+1}$ and $x_n$?

I actually know what the relationship is, however, don't know how to derive it.

My first attempt was to try and see some geometrical pattern, so I did the following:

http://i.stack.imgur.com/4BNyq.jpg

But still couldn't find a derivation.

Although it is obvious to see that $x_0 = x_1$

so for $n = 0$

We have $x_{1} = x_{0}+0 $

any tips, hints or help very much appreciated.

Setting $\displaystyle \alpha_{n}= \theta_{0} + \sum_{i =1}^{n} \theta_{n}$ is $x_{n} = \cos \alpha_{n}$ and $y_{n} = \sin \alpha_{n}$, so that, applying the 'angle sum identities', the requested recursive relation are...

$\displaystyle x_{n+1} = x_{n}\ \cos \theta_{n} - y_{n}\ \sin \theta_{n}$

$\displaystyle y_{n+1} = x_{n}\ \sin \theta_{n} + y_{n}\ \cos \theta_{n}\ (1)$

Kind regards

$\chi$ $\sigma$
 
chisigma said:
Setting $\displaystyle \alpha_{n}= \theta_{0} + \sum_{i =1}^{n} \theta_{n}$ is $x_{n} = \cos \alpha_{n}$ and $y_{n} = \sin \alpha_{n}$, so that, applying the 'angle sum identities', the requested recursive relation are...

$\displaystyle x_{n+1} = x_{n}\ \cos \theta_{n} - y_{n}\ \sin \theta_{n}$

$\displaystyle y_{n+1} = x_{n}\ \sin \theta_{n} + y_{n}\ \cos \theta_{n}\ (1)$

Kind regards

$\chi$ $\sigma$

Still helpful as ever chi sigma!

Thank you my friend.

Could I just clarify which formula you used to get the recursive relationship?
can it be found on this page anywhere?:
Trigonometric Identities

I am thinking it is this one:

$\cos(α + β) = \cos(α)\cos(β) – \sin(α)\sin(β) $Although, the recurrence relationship I am given for this is that

$x_{n+1} = x_n - y_n \tan(\theta_{n+1})$

and

$y_{n+1} = y_n + x_n \tan(\theta_{n+1})$
 
Last edited:
nacho said:
Still helpful as ever chi sigma!

Thank you my friend.

Could I just clarify which formula you used to get the recursive relationship?
can it be found on this page anywhere?:
Trigonometric Identities

I am thinking it is this one:

$\cos(α + β) = \cos(α)\cos(β) – \sin(α)\sin(β) $Although, the recurrence relationship I am given for this is that

$x_{n+1} = x_n - y_n \tan(\theta_{n+1})$

and

$y_{n+1} = y_n + x_n \tan(\theta_{n+1})$

If the $x_{n}$ are 'cosines' and the $y_{n}$ are 'sines' the trigonometric identities to be used are...

$\displaystyle \cos (\alpha + \beta) = \cos \alpha\ \cos \beta - \sin \alpha\ \sin \beta\ (1)$

$\displaystyle \sin (\alpha + \beta) = \cos \alpha\ \sin \beta + \sin \alpha\ \cos \beta\ (2)$

Regarding the relation You have found, I think it is in some way critical: what does it happen if fon one n is $\theta_{n} = \frac{\pi}{2}$?(Speechless)...

Kind regards

$\chi$ $\sigma$
 
chisigma said:
If the $x_{n}$ are 'cosines' and the $y_{n}$ are 'sines' the trigonometric identities to be used are...

$\displaystyle \cos (\alpha + \beta) = \cos \alpha\ \cos \beta - \sin \alpha\ \sin \beta\ (1)$

$\displaystyle \sin (\alpha + \beta) = \cos \alpha\ \sin \beta + \sin \alpha\ \cos \beta\ (2)$

Regarding the relation You have found, I think it is in some way critical: what does it happen if fon one n is $\theta_{n} = \frac{\pi}{2}$?(Speechless)...

Kind regards

$\chi$ $\sigma$

$\chi$ the relation that I put was the one we are given to derive. So I guess the assumption is $\theta < \frac{\pi}{2}$, which is also consistent with the diagram given.

I.e We are told the recurrence relation is :$x_{n+1} = x_n - y_n \tan(\theta_{n+1})$

and

$y_{n+1} = y_n + x_n \tan(\theta_{n+1})$

and I need to derive it.

It seems almost similar to what you got, so I wonder where the difference comes about?
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top