Finding transition temperature of Landau ferroelectric

Click For Summary
SUMMARY

The discussion focuses on finding the transition temperature, denoted as ##T_{\theta}^{'}##, of a Landau ferroelectric system. The user derived equations for the free energy minimization with respect to the order parameter ##\theta## and polarization ##P##, leading to critical expressions involving temperature. The user encountered difficulties in solving the cubic equation for ##T_{\theta}^{'}##, which arises when ##\theta## approaches zero. The hint provided suggests rewriting the expression for ##P## in terms of ##T_{\theta}^{'}## to facilitate finding the solution.

PREREQUISITES
  • Understanding of Landau theory of phase transitions
  • Familiarity with thermodynamic potentials and free energy minimization
  • Knowledge of cubic equations and their solutions
  • Proficiency in mathematical manipulation of equations involving temperature and phase variables
NEXT STEPS
  • Study the derivation of Landau free energy expansions in ferroelectrics
  • Learn about solving cubic equations analytically and numerically
  • Explore the implications of phase transitions in materials science
  • Investigate the relationship between temperature, order parameters, and phase stability in ferroelectric materials
USEFUL FOR

Researchers, physicists, and materials scientists interested in phase transitions, particularly in the context of ferroelectric materials and Landau theory applications.

baseballfan_ny
Messages
92
Reaction score
23
Homework Statement
In terms of Landau theory, a “proper ferroelectric” is completely analogous to a ferromagnet, where the order parameter is the polarization ##P## (dipole moment per volume). We can write a free energy for the ferroelectric phase transition as ##F_P = \frac 1 2 \alpha (T - T_P)P^2 + \frac 1 4 g_4 P^4 + ...##.
For a molecular crystal a structural phase transition can occur where the molecular axis tilts by an angle ##\theta## with respect to the crystal axis. The associated free energy is ##F_{\theta} = \frac 1 2 a_{\theta}(T - T_{\theta}) \theta^2 + \frac 1 4 b_{\theta} \theta^4 + ... ##.
Under certain circumstances (the molecule is chiral, i.e., lacks inversion symmetry), the dipole moment on the molecule can couple to the molecular tilt, with a coupling term ##F_{P \theta} = -t \theta P ## where t is the coupling constant.

##T_{\theta} > T_P## and a tilt phase transition will occur first on cooling. A net polarization can exist due to coupling.

a. In the tilted phase ##T_P < T < T_{\theta}##, determine ##\theta## and ##P## in terms of ##\alpha##, ##a_{\theta}##, ##b_{\theta}##, ##T_P##, and ##T_{\theta}##. You can neglect the ##P^4## term.
b. Because of the coupling, the tilt transition does not occur at ##T_{\theta}##, but some other temp ##T_{\theta}^{'}##. Determine ##T_{\theta}^{'}## and the critical exponent ##b## for order parameter ##\theta##.
Relevant Equations
##\frac {\partial F} {\partial \xi} = 0 ##
So for part a, I separately minimized F wrt ##\theta## and ##P## and got the following.

$$\frac {\partial f} {\partial \theta} = a_{\theta}(T-T_{\theta})\theta + b_{\theta}\theta^3 - tP = 0$$
$$ \frac {\partial f} {\partial P} = \alpha(T-T_P)P -t\theta$$
$$ P = t\theta \alpha (T-T_P) $$

Then subbing this into the expression for θ gives me...

$$ \theta \left[ a_{\theta}(T-T_{\theta}) + b_{\theta}\theta^2 - t^2\alpha(T-T_P) \right] = 0 $$

which I can solve for ##\theta = 0## or ##\theta = \sqrt {\frac {t^2} { \alpha (T - T_P) } }- a_{\theta}(T - T_{\theta})##. And plugging this in gives ##P = \pm \frac {t} {\alpha (T - T_P)} \sqrt {\frac {t^2} { \alpha (T - T_P) } }- a_{\theta}(T - T_{\theta})##.

Now my problem is with b, because I don't think I have the proper approach of finding the temperature at which the phase transition occurs, ##T_{\theta}^{'}##. My idea was that maybe ##T_{\theta}^{'}## is the temperature ##T## when ##\theta## goes to 0.

That is
$$\pm \sqrt {\frac {t^2} { \alpha (T_{\theta}^{'} - T_P) } }- a_{\theta}(T_{\theta}^{'} - T_{\theta}) = 0 $$
$$ \frac {t^2} { \alpha (T_{\theta}^{'} - T_P) } = (T_{\theta}^{'} - T_{\theta})(T_{\theta}^{'} - T_P) $$

which seems a bit difficult to solve for ##T_{\theta}^{'}##. The hint I have from class is that I should somehow re-write the expression for P in terms of ##T_{\theta}^{'}##.
 
Last edited:
Physics news on Phys.org
It is a cubic equation of ##T'_{\theta}## whose solution we know by formula.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
13
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K