Finding transition temperature of Landau ferroelectric

baseballfan_ny
Messages
92
Reaction score
23
Homework Statement
In terms of Landau theory, a “proper ferroelectric” is completely analogous to a ferromagnet, where the order parameter is the polarization ##P## (dipole moment per volume). We can write a free energy for the ferroelectric phase transition as ##F_P = \frac 1 2 \alpha (T - T_P)P^2 + \frac 1 4 g_4 P^4 + ...##.
For a molecular crystal a structural phase transition can occur where the molecular axis tilts by an angle ##\theta## with respect to the crystal axis. The associated free energy is ##F_{\theta} = \frac 1 2 a_{\theta}(T - T_{\theta}) \theta^2 + \frac 1 4 b_{\theta} \theta^4 + ... ##.
Under certain circumstances (the molecule is chiral, i.e., lacks inversion symmetry), the dipole moment on the molecule can couple to the molecular tilt, with a coupling term ##F_{P \theta} = -t \theta P ## where t is the coupling constant.

##T_{\theta} > T_P## and a tilt phase transition will occur first on cooling. A net polarization can exist due to coupling.

a. In the tilted phase ##T_P < T < T_{\theta}##, determine ##\theta## and ##P## in terms of ##\alpha##, ##a_{\theta}##, ##b_{\theta}##, ##T_P##, and ##T_{\theta}##. You can neglect the ##P^4## term.
b. Because of the coupling, the tilt transition does not occur at ##T_{\theta}##, but some other temp ##T_{\theta}^{'}##. Determine ##T_{\theta}^{'}## and the critical exponent ##b## for order parameter ##\theta##.
Relevant Equations
##\frac {\partial F} {\partial \xi} = 0 ##
So for part a, I separately minimized F wrt ##\theta## and ##P## and got the following.

$$\frac {\partial f} {\partial \theta} = a_{\theta}(T-T_{\theta})\theta + b_{\theta}\theta^3 - tP = 0$$
$$ \frac {\partial f} {\partial P} = \alpha(T-T_P)P -t\theta$$
$$ P = t\theta \alpha (T-T_P) $$

Then subbing this into the expression for θ gives me...

$$ \theta \left[ a_{\theta}(T-T_{\theta}) + b_{\theta}\theta^2 - t^2\alpha(T-T_P) \right] = 0 $$

which I can solve for ##\theta = 0## or ##\theta = \sqrt {\frac {t^2} { \alpha (T - T_P) } }- a_{\theta}(T - T_{\theta})##. And plugging this in gives ##P = \pm \frac {t} {\alpha (T - T_P)} \sqrt {\frac {t^2} { \alpha (T - T_P) } }- a_{\theta}(T - T_{\theta})##.

Now my problem is with b, because I don't think I have the proper approach of finding the temperature at which the phase transition occurs, ##T_{\theta}^{'}##. My idea was that maybe ##T_{\theta}^{'}## is the temperature ##T## when ##\theta## goes to 0.

That is
$$\pm \sqrt {\frac {t^2} { \alpha (T_{\theta}^{'} - T_P) } }- a_{\theta}(T_{\theta}^{'} - T_{\theta}) = 0 $$
$$ \frac {t^2} { \alpha (T_{\theta}^{'} - T_P) } = (T_{\theta}^{'} - T_{\theta})(T_{\theta}^{'} - T_P) $$

which seems a bit difficult to solve for ##T_{\theta}^{'}##. The hint I have from class is that I should somehow re-write the expression for P in terms of ##T_{\theta}^{'}##.
 
Last edited:
Physics news on Phys.org
It is a cubic equation of ##T'_{\theta}## whose solution we know by formula.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top