Finding transition temperature of Landau ferroelectric

baseballfan_ny
Messages
92
Reaction score
23
Homework Statement
In terms of Landau theory, a “proper ferroelectric” is completely analogous to a ferromagnet, where the order parameter is the polarization ##P## (dipole moment per volume). We can write a free energy for the ferroelectric phase transition as ##F_P = \frac 1 2 \alpha (T - T_P)P^2 + \frac 1 4 g_4 P^4 + ...##.
For a molecular crystal a structural phase transition can occur where the molecular axis tilts by an angle ##\theta## with respect to the crystal axis. The associated free energy is ##F_{\theta} = \frac 1 2 a_{\theta}(T - T_{\theta}) \theta^2 + \frac 1 4 b_{\theta} \theta^4 + ... ##.
Under certain circumstances (the molecule is chiral, i.e., lacks inversion symmetry), the dipole moment on the molecule can couple to the molecular tilt, with a coupling term ##F_{P \theta} = -t \theta P ## where t is the coupling constant.

##T_{\theta} > T_P## and a tilt phase transition will occur first on cooling. A net polarization can exist due to coupling.

a. In the tilted phase ##T_P < T < T_{\theta}##, determine ##\theta## and ##P## in terms of ##\alpha##, ##a_{\theta}##, ##b_{\theta}##, ##T_P##, and ##T_{\theta}##. You can neglect the ##P^4## term.
b. Because of the coupling, the tilt transition does not occur at ##T_{\theta}##, but some other temp ##T_{\theta}^{'}##. Determine ##T_{\theta}^{'}## and the critical exponent ##b## for order parameter ##\theta##.
Relevant Equations
##\frac {\partial F} {\partial \xi} = 0 ##
So for part a, I separately minimized F wrt ##\theta## and ##P## and got the following.

$$\frac {\partial f} {\partial \theta} = a_{\theta}(T-T_{\theta})\theta + b_{\theta}\theta^3 - tP = 0$$
$$ \frac {\partial f} {\partial P} = \alpha(T-T_P)P -t\theta$$
$$ P = t\theta \alpha (T-T_P) $$

Then subbing this into the expression for θ gives me...

$$ \theta \left[ a_{\theta}(T-T_{\theta}) + b_{\theta}\theta^2 - t^2\alpha(T-T_P) \right] = 0 $$

which I can solve for ##\theta = 0## or ##\theta = \sqrt {\frac {t^2} { \alpha (T - T_P) } }- a_{\theta}(T - T_{\theta})##. And plugging this in gives ##P = \pm \frac {t} {\alpha (T - T_P)} \sqrt {\frac {t^2} { \alpha (T - T_P) } }- a_{\theta}(T - T_{\theta})##.

Now my problem is with b, because I don't think I have the proper approach of finding the temperature at which the phase transition occurs, ##T_{\theta}^{'}##. My idea was that maybe ##T_{\theta}^{'}## is the temperature ##T## when ##\theta## goes to 0.

That is
$$\pm \sqrt {\frac {t^2} { \alpha (T_{\theta}^{'} - T_P) } }- a_{\theta}(T_{\theta}^{'} - T_{\theta}) = 0 $$
$$ \frac {t^2} { \alpha (T_{\theta}^{'} - T_P) } = (T_{\theta}^{'} - T_{\theta})(T_{\theta}^{'} - T_P) $$

which seems a bit difficult to solve for ##T_{\theta}^{'}##. The hint I have from class is that I should somehow re-write the expression for P in terms of ##T_{\theta}^{'}##.
 
Last edited:
Physics news on Phys.org
It is a cubic equation of ##T'_{\theta}## whose solution we know by formula.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top