I'm trying to recreate the results of this paper https://arxiv.org/pdf/1607.08016.pdf(adsbygoogle = window.adsbygoogle || []).push({});

to obtain the constraints for the matter density and hubble constant h.

However every time I try to create there results my Fisher Matrix has elements of order of 10^14 which is far to high. I suspect this is happening because the Vsurvey I'm calculating is so large. I have no idea how they were able to there results. I'll attach my Mathematica code for the F_11 element of the Fisher Matrix. I don't know if I'm am misunderstanding a formula, if its a mathematica error or if there is some missing step.

Parallelize[

Total[Table[(NIntegrate[(E^(0)) ((D[

Log[Pobs,

H]] /. {Da -> (300000/(1 + z)*

NIntegrate[

1/(68.8` \[Sqrt](0.7015117571500769` +

0.2984` (1 + Z)^3 +

0.00008824284992310034` (1 + Z)^4)), {Z, 0, z}]),

H -> 68.8` \[Sqrt](0.7015117571500769` +

0.2984` (1 + z)^3 +

0.00008824284992310034` (1 +

z)^4)})^2)*(Veff /. {Da -> (300000/(1 + z)*

NIntegrate[

1/(68.8` \[Sqrt](0.7015117571500769` +

0.2984` (1 + Z)^3 +

0.00008824284992310034` (1 + Z)^4)), {Z, 0, z}]),

H -> 68.8` \[Sqrt](0.7015117571500769` +

0.2984` (1 + z)^3 +

0.00008824284992310034` (1 + z)^4)})*

k^2/(8*Pi^2), {u, -1, 1}, {k, 0,

f[z]}]) ((D[(100 hh Sqrt[

1 - 0.000041769223554`/(hh)^2 - MM + MM (1 + z)^3 + (

0.000041769223554` (1 + z)^4)/(hh)^2]),

MM] /. {MM -> .2984, hh -> .688})^2) +

2*(D[(300000/(1 + z)*

NIntegrate[

1/(100 hh Sqrt[

1 - 0.000041769223554`/(hh)^2 - MM + MM (1 + Z)^3 + (

0.000041769223554` (1 + Z)^4)/(hh)^2]), {Z, 0, z}]),

MM] /. {MM -> .2984,

hh -> .688})*(D[(100 hh Sqrt[

1 - 0.000041769223554`/(hh)^2 - MM + MM (1 + z)^3 + (

0.000041769223554` (1 + z)^4)/(hh)^2]),

MM] /. {MM -> .2984, hh -> .688})*

NIntegrate[(E^(0)) (D[

Log[Pobs,

H]] /. {H -> (68.8` Sqrt[

0.7015117571500769` + 0.2984` (1 + z)^3 +

0.00008824284992310034` (1 + z)^4]),

Da -> (300000/(1 + z)*

NIntegrate[

1/(68.8` \[Sqrt](0.7015117571500769` +

0.2984` (1 + Z)^3 +

0.00008824284992310034` (1 + Z)^4)), {Z, 0,

z}])}) (D[

Log[Pobs,

Da]] /. {Da -> (300000/(1 + z)*

NIntegrate[

1/(68.8` \[Sqrt](0.7015117571500769` +

0.2984` (1 + Z)^3 +

0.00008824284992310034` (1 + Z)^4)), {Z, 0, z}]),

H -> (68.8` Sqrt[

0.7015117571500769` + 0.2984` (1 + z)^3 +

0.00008824284992310034` (1 +

z)^4])})*(Veff /. {H -> (68.8` Sqrt[

0.7015117571500769` + 0.2984` (1 + z)^3 +

0.00008824284992310034` (1 + z)^4]),

Da -> (300000/(1 + z)*

NIntegrate[

1/(68.8` \[Sqrt](0.7015117571500769` +

0.2984` (1 + Z)^3 +

0.00008824284992310034` (1 + Z)^4)), {Z, 0,

z}])})*k^2/(8*Pi^2), {u, -1, 1}, {k, 0,

f[z]}] + ((D[(300000/(1 + z)*

NIntegrate[

1/(100 hh Sqrt[

1 - 0.000041769223554`/(hh)^2 - MM + MM (1 + Z)^3 + (

0.000041769223554` (1 + Z)^4)/(hh)^2]), {Z, 0, z}]),

MM] /. {MM -> .2984,

hh -> .688})^2)*(NIntegrate[(E^(0)) ((D[

Log[Pobs,

Da]] /. {H -> (68.8` Sqrt[

0.7015117571500769` + 0.2984` (1 + z)^3 +

0.00008824284992310034` (1 + z)^4]),

Da -> (300000/(1 + z)*

NIntegrate[

1/(68.8` \[Sqrt](0.7015117571500769` +

0.2984` (1 + Z)^3 +

0.00008824284992310034` (1 + Z)^4)), {Z, 0,

z}])})^2)*(Veff /. {Da -> (300000/(1 + z)*

NIntegrate[

1/(68.8` \[Sqrt](0.7015117571500769` +

0.2984` (1 + Z)^3 +

0.00008824284992310034` (1 + Z)^4)), {Z, 0, z}]),

H -> 68.8` \[Sqrt](0.7015117571500769` +

0.2984` (1 + z)^3 +

0.00008824284992310034` (1 + z)^4)})*

k^2/(8*Pi^2), {u, -1, 1}, {k, 0, f[z]}]), {z, .7, 2.1, .1}]]]

This code is supposed to calculate F_11 and

Pmatter =

E^(-k^2*u^2*

rr^2)*(((8 Pi^2*(300000)^4*.002*2.45*10^-9)/(25*((100*h)^4)*

M^2))*

(0.02257`/(h^2*M)*Tb + ((M - 0.02257)/M)*Tc)^2)*((Gz/

Go)^2)*(k/.002)^.96

Pobs = ((Dref)^2*H)/(Da^2*Href)*Pg;

Veff = (((1.2*Pg)/(1.2*Pg + 1))^2)*Vsurvey;

Pg = (1 +

z) (1 + (0.4840378144001318` k^2)/((k^2 + u^2) Sqrt[1 + z]))^2*

Pmatter

If anyone has had similar issues, can offer any help or has done this calculation before I will greatly appreciate your help.

Oh and my Vsurvey is Vsurvey = 5.98795694781456`*^11(MPC)^3

**Physics Forums | Science Articles, Homework Help, Discussion**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# A Fisher Forecasting For EUCLID Survey Help

Have something to add?

Draft saved
Draft deleted

Loading...

Similar Threads for Fisher Forecasting EUCLID |
---|

I What is the C_l in the Fisher Matrix For An CMB Survey? |

A How To Do Fisher Forecasting For Constraining Parameters |

**Physics Forums | Science Articles, Homework Help, Discussion**