Flowerchild1993's question at Yahoo Answers regarding minimizing cost of fence

  • Context: MHB 
  • Thread starter Thread starter MarkFL
  • Start date Start date
Click For Summary
SUMMARY

The discussion addresses a calculus problem involving the optimization of fencing costs for a rectangular field with an area of 770 square feet. The cost of fencing is $3 per foot for two sides and $8 per foot for the other two sides. The derived dimensions for minimizing costs are approximately \( x = \frac{4\sqrt{1155}}{3} \) feet and \( y = \frac{\sqrt{1155}}{2} \) feet. The analysis confirms that the critical point found is indeed a minimum using the second derivative test.

PREREQUISITES
  • Understanding of calculus concepts, specifically optimization and derivatives.
  • Familiarity with cost functions and their applications in real-world scenarios.
  • Knowledge of algebraic manipulation and solving equations.
  • Basic understanding of rectangular area calculations.
NEXT STEPS
  • Explore advanced optimization techniques in calculus.
  • Learn about cost minimization problems in economics.
  • Study the application of the second derivative test in various contexts.
  • Investigate real-world applications of calculus in construction and resource management.
USEFUL FOR

Students studying calculus, mathematicians interested in optimization problems, and professionals in fields such as construction and economics looking to minimize costs effectively.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Calculus help! Word problem?

A rectangular field is to be enclosed on four sides with a fence. Fencing costs $3 per foot for two opposite sides, and $8 per foot for the other two sides. Find the dimensions of the field of area 770 ft squared that would be the cheapest to enclose.

Here is a link to the question:

Calculus help! Word problem? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Physics news on Phys.org
Hello flowerchild1993,

Let's let $x$ be the length of one pair of sides, for which fencing costs $C_x$ in dollars per foot and $0$ be the length of the other pair of sides, for which fencing costs $C_y$ in dollars per foot. All measures and constants are positive.

The cost function is therefore:

$$C(x,y)=2C_xx+2C_yy$$

Let the area of the field be $A$, and so we have:

$$A=xy\,\therefore\,y=\frac{A}{x}$$

and so we may write the cost function in terms of one variable $x$:

$$C(x)=2C_xx+2AC_yx^{-1}$$

Now, to find the extrema, we differentiate with respect to $x$ and equate to zero:

$$C'(x)=2C_x-2AC_yx^{-2}=0$$

Multiplying through by $$\frac{x^2}{2}$$ we may arrange this as:

$$x^2=\frac{AC_y}{C_x}$$

Taking the positive root, we find:

$$x=\sqrt{\frac{AC_y}{C_x}}$$

And so:

$$y=\frac{A}{\sqrt{\frac{AC_y}{C_x}}}=\sqrt{\frac{AC_x}{C_y}}$$

This is why I used variables to denote the constants of the problem...we can now see how the dimensions of the field will change with respect to changes made to any of the constants. We see that if $C_x$ increases then $x$ will decrease and $y$ will increase, etc. We also see that:

$$\frac{x}{y}=\frac{C_y}{C_x}$$

This ratio also tells us how the dimensions will vary based on the costs.

Using the second derivative test for relative extrema, we find that:

$$C''(x)=4AC_yx^{-3}>0$$ for $$x>0$$ which we have assumed, and so we know this critical value is at a minimum.

Now it's just a matter of using the given data to find the required dimensions. Let's let $x$ be the pair of sides with the cheaper fencing, so we have:

$$C_x=3,\,C_y=8,\,A=770$$

$$x=\sqrt{\frac{770\cdot8}{3}}=\frac{4\sqrt{1155}}{3}$$

$$y=\sqrt{\frac{770\cdot3}{8}}=\frac{\sqrt{1155}}{2}$$

To flowerchild1993 and any other guests viewing this topic, I invite and encourage you to post other optimization problems here in our http://www.mathhelpboards.com/f10/ forum.

Best Regards,

Mark.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 1 ·
Replies
1
Views
8K
Replies
4
Views
3K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
9K
Replies
2
Views
5K
Replies
1
Views
4K