1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Fluid mechanics and circular flow

  1. Sep 27, 2013 #1
    Dear all

    I am having a problem on circular flow of fluid. On all books I have read they say
    [itex]\frac{dp}{dr}[/itex]=[itex]\rho[/itex]v[itex]^{2}[/itex][itex]/r[/itex]

    Which make sense by using infinitesimal square volume and take the force exert.

    But if I use a circular infinitesimal volume (which is usually the case for circular things), i get a different answer because the side with greater pressure have greater area.

    Why is this ?


    Thank you
     
  2. jcsd
  3. Sep 28, 2013 #2

    Simon Bridge

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member
    2016 Award

    Please describe the situation you are dealing with.
    What do you mean by "circular flow of fluid"?
    To me that means the pipe goes in a circle, or that there is a vortex or whirlpool.
    But I don't see how you can have an infinitesimal volume with different areas on different sides.
     
  4. Sep 28, 2013 #3
    Thanks for the reply. Sorry I did not make it clear.

    I mean for a vortex, or any flow that is not along a straight line.

    Because from what I deal with viscid fluid/statics/pressure vessel.. when there is rotation or cylindrical coordinate, we tend to use a curved shape (sector) infinitesimal area with area rdrdθ.
    But for this shape, the force from outside is (r+dr)dθ(p+dp/dr*dr), force from inside is rdθ*p. Giving a difference of (dp/dr*r+p)*dθ*dr rather than just dp/dr*r*dθ*dr as for a square infinitesimal area.

    Please tell me if I still make it unclear. Thank you
     
  5. Sep 28, 2013 #4

    Simon Bridge

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member
    2016 Award

    In cylindrical coordinates, the force on the inner area of the infinitesimal volume ##dV## is ##F_1=p(\rho)\rho d\theta dz## while the outer area is ##F_2=(\rho+d\rho)p(\rho+d\rho) d\theta dz## and your assertion is that this means that ##F_1<F_2##. Where ##p(\rho)## is the pressure at radius ##\rho##.

    Let's say there is no circular motion - the water is still.
    Cylindrical coordinates have been chosen because of the cylindrical container or something.
    Then ##F_2>F_1## would make the water tend to hump up in the middle wouldn't it?

    Is that the jist of things?
     
  6. Sep 28, 2013 #5
    Am I making the mistake of ignoring the tangential component of forces...

    Thank you so much!
     
  7. Sep 28, 2013 #6

    Simon Bridge

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member
    2016 Award

    In my example, there are no tangential forces.

    You also get a similar issue vertically - the pressure of the water is higher as you go deeper, so the force up from the bottom of an infinitesimal volume is greater than the force down from the top...

    These are things you've dealt with before.

    If the water is in uniform circular motion, then there must be an unbalanced force on each volume element that points to the center or the motion is not possible right?
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook