Flux of Electric field through sphere

AI Thread Summary
The discussion centers on understanding electric flux through a sphere, highlighting that it is determined solely by the charges enclosed within the sphere, while external charges do not influence the flux. The initial calculation mistakenly included an external charge, leading to confusion. Gauss's law is introduced as the principle explaining that electric flux is related to the net charge inside a closed surface. An analogy is made comparing electric charges to sources and sinks of water, illustrating how flux behaves with enclosed and external charges. Ultimately, the key takeaway is that only enclosed charges affect the electric flux through a sphere, aligning with Gauss's law.
Tesla In Person
Messages
34
Reaction score
13
Homework Statement
What is the flux of electric field through sphere with charges inside and outside of the sphere?
Relevant Equations
Electric field flux = Q/ e0
My attempt: We have 3 charges inside 2 +ve and 1 -ve so i just added them up. 4 + 5 +(-7) = 2q
Then there is a -5q charge outside the sphere. I did 2q + (-5q)= -3q . The electric field flux formula is Flux= q/ E0 . So i got -3q/E0 which is obviously wrong : ) . After quick googling , I discovered that the electric flux through a sphere is only dependent on charges enclosed by the sphere , charges outside don't affect electric flux through sphere. Is it correct and why it is the case? I am not familiar with Gauss' law so how do i get started. Thank you
 

Attachments

  • physics 5.PNG
    physics 5.PNG
    12.3 KB · Views: 155
Physics news on Phys.org
Tesla In Person said:
After quick googling , I discovered that the electric flux through a sphere is only dependent on charges enclosed by the sphere , charges outside don't affect electric flux through sphere. Is it correct and why it is the case?
That is Gauss’ law.
 
The sources of electric flux are charges. Think of them as sources (positive) and sinks (negative) of water. If a closed surfaces encloses source, water comes out of the surface at every point on it. Likewise, if a sink is enclosed, water goes into the surface at every point on it. If you have a combination of sources and sinks you need to add all the positives and negatives and see what the net is.

Now if a source is outside the surface and there are no sources or sinks enclosed by the surface, what goes into it through the side closer to the source must come out the other side. You put all this together and you have an intuitive understanding of Gauss's law.
 
  • Like
Likes Tesla In Person
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Back
Top