I don't know whether there already is a word, but if you were to approach me on the street and start talking to me about isometric foliations, there's two things I would have in mind. The first one is what you described, that is a foliation of a manifold into mutually isometric leaves. The next one would be two (pseudo-)Riemannian manifolds ##(M,g),(M',g')## that are foliated and there exists an isometry between the leaves of the two with respect to the pullback metric. With respect to this metric, the leaves are assumed to be pseudo-Riemannian as well. Note that this neither implies that ##(M,g)## and ##(M',g')## are isometric, nor that the leaves are mutually isometric. Actually, the more I think about this, the more it appears that the latter is best described by the word "isometric foliation".
It follows that this would be a bad choice of terminology. However, both foliations and metrics are omnipresent in differential geometry, so there's probably a word... I spent some time looking but I really couldn't find anything.
To be safe I would simply stick to "a foliation with isometric leaves" or define your own terminology.