silverwhale
- 78
- 2
Homework Statement
We have three point charges Q_1, Q_2, Q_3, forming together an isosceles triangle. Two sides are of equal length r.
The point charge Q_1 is located at (0,0),
the point charge Q_2 is located at (x_2,0)
and The point charge Q_3 is located at (\frac{x_2}{2},\sqrt{r^2 - ({\frac{x_2}{2}})^2}).
Calculate the resulting force on Q_3 for the cases Q_2 = Q_1 and Q_2 = - Q_1.
Homework Equations
I think two formulas are relevant. Coulombs law and the superposition principle.
The Attempt at a Solution
From the Superposition principle and Coulombs law we have:
\vec{F}_3 = \frac{1}{4 \pi \epsilon_0} Q_3 Q_1 \frac{\vec{x}_3 - \vec{x}_1}{|\vec{x}_3 - \vec{x}_1|^3} + \frac{1}{4 \pi \epsilon_0} Q_3 Q_2 \frac{\vec{x}_3 - \vec{x}_2}{|\vec{x}_3 - \vec{x}_2|^3},
where \vec{F}_3 is the resulting force on Q_3.
Next, I calculated \vec{x}_3 - \vec{x}_1 = (\frac{x_2}{2},\sqrt{r^2 - ({\frac{x_2}{2}})^2})
and \vec{x}_3 - \vec{x}_2 = (-(\frac{x_2}{2}),\sqrt{r^2 - ({\frac{x_2}{2}})^2}).
Then I calculated the norm of both to get |\vec{x}_3 - \vec{x}_1| = |\vec{x}_3 - \vec{x}_2| = r.
So I get for \vec{F}_3,
\vec{F}_3 = \frac{1}{4 \pi \epsilon_0} \frac{Q_3 Q_1}{r^3} (\frac{x_2}{2},\sqrt{r^2 - ({\frac{x_2}{2}})^2}) + \frac{1}{4 \pi \epsilon_0} \frac{Q_3 Q_2}{r^3} (-\frac{x_2}{2},\sqrt{r^2 - ({\frac{x_2}{2}})^2})
Now for Q_2 = Q_1:
\vec{F}_3 = \frac{1}{4 \pi \epsilon_0} \frac{Q_3 Q_1}{r^3}( (\frac{x_2}{2},\sqrt{r^2 - ({\frac{x_2}{2}})^2}) + (-\frac{x_2}{2},\sqrt{r^2 - ({\frac{x_2}{2}})^2}))
thus,
\vec{F}_3 = \frac{1}{4 \pi \epsilon_0} \frac{Q_3 Q_1}{r^3}( 0,2 \sqrt{r^2 - ({\frac{x_2}{2}})^2}).
And for the case Q_2 = - Q_1:
\vec{F}_3 = \frac{1}{4 \pi \epsilon_0} \frac{Q_3 Q_1}{r^3} (x_2,0).
Is this correct? What do you think?
Last edited: