Force needed to hold together a capacitor

Click For Summary
SUMMARY

The discussion centers on calculating the force required to hold together two insulating capacitor plates, utilizing two methods. Method 1 calculates the average force on each plate as Q²/(2Ae₀), while Method 2 derives the same force using the capacitance formula C = e₀A/x and energy considerations. The participants clarify that both methods yield the same result, Q²/Ae₀, despite initial confusion regarding the electric fields in the regions surrounding the plates. The consensus is that the average electric field acting on each plate is influenced by the opposing fields from the other plate.

PREREQUISITES
  • Understanding of electric fields and their superposition
  • Familiarity with capacitor theory, specifically insulating plates
  • Knowledge of capacitance calculations, including C = e₀A/x
  • Basic principles of electrostatics and forces on charged objects
NEXT STEPS
  • Study the derivation of electric fields between parallel plate capacitors
  • Learn about energy stored in capacitors and its relation to force
  • Explore the implications of insulating materials on electric fields
  • Investigate the concept of electric field lines and their behavior in capacitors
USEFUL FOR

Electrical engineers, physics students, and anyone involved in capacitor design or analysis will benefit from this discussion, particularly those interested in the forces acting on insulating capacitor plates.

phantomvommand
Messages
287
Reaction score
39
Homework Statement
The inner surfaces of 2 *insulating* plates are given a charge Q. What is the force required to hold them together?
Relevant Equations
F = 1/2 (E outside + E inside) * Q
I have 2 methods, which give 2 different solutions:
Let sigma = charge per unit area
Let plate 1 be the left plate, plate 2 = right plate.
Method 1:
Because they are insulating, consider the electric field at 3 regions; region 1 to the left of plate 1, region 2 between the plates, and region 3 to the right of plate 2.

Because the plates are insulating, Electric field in the regions are superpositions of the field due to each plate.
Region 1 has field = sigma/e0 + 0 = sigma/e0 directed leftwards,
Region 2 has field = sigma/e0 - sigma/e0 = 0,
Region 1 has field = sigma/e0 + 0 = sigma/e0 directed rightwards,

Average force on plate 1 = sigma/2e0 *Q (Average E field * Q)= Asigma^2/2e0 = Q^2/2Ae0, where A is area of plate. (force directed leftwards)
Similarly, force on plate 2 = Q^2/2Ae0. (force directed rightwards)

Thus, total force needed to hold the plates together is Q^2/Ae0.

Method 2:
Consider the capacitance of the system.
C = e0A/x, where x is plate separation.
Energy = Q^2x/2Ae0.
F = dE/dx = Q^2/2A e0.

Method 2 gives the correct answer. Why is method 1 wrong?
 
  • Like
Likes   Reactions: Delta2
Physics news on Phys.org
I have since realized why my 2 methods don't seem to "reconcile". Please do tell me if I'm right on this.

They in fact are the same thing. The force given by -dU/dx refers to the force experienced by each capacitor plate, which is exactly the same as what method 1 gives.
 
phantomvommand said:
Region 1 has field = sigma/e0 + 0 = sigma/e0 directed leftwards,
Region 2 has field = sigma/e0 - sigma/e0 = 0,
Not sure of your reasoning there. I would have said Region 1 has field = the sum of the fields from the two plates = sigma/(2e0) + sigma/(2e0) = sigma/e0 directed leftwards,
Likewise Region 2 has field = sigma/(2e0) - sigma/(2e0) = 0,
phantomvommand said:
Average force on plate 1 = sigma/2e0 *Q
Again, I would have argued that the field from plate 2 is sigma/(2e0), so the force is Q sigma/(2e0). There is no force on plate 1 from plate 1's field.
But I suppose your method works because plate 1 necessarily exerts equal and opposite fields each side, so on average exerts no field where it is.
phantomvommand said:
Thus, total force needed to hold the plates together is Q^2/Ae0.
Arguably, the question is unclear, but what they mean is, suppose you tied the plates together with a cord; what would the tension be in the cord?
 
haruspex said:
Not sure of your reasoning there. I would have said Region 1 has field = the sum of the fields from the two plates = sigma/(2e0) + sigma/(2e0) = sigma/e0 directed leftwards,
Likewise Region 2 has field = sigma/(2e0) - sigma/(2e0) = 0,

Again, I would have argued that the field from plate 2 is sigma/(2e0), so the force is Q sigma/(2e0). There is no force on plate 1 from plate 1's field.
But I suppose your method works because plate 1 necessarily exerts equal and opposite fields each side, so on average exerts no field where it is.

Arguably, the question is unclear, but what they mean is, suppose you tied the plates together with a cord; what would the tension be in the cord?

Thank you for your reply. Why would it be sigma/2e0 though? The plates are insulating here, so the charge of Q remains solely on 1 side of the plate. The other side has 0 charge. Thus, the E-field in the region in between is 0 (as the inner surface of the other plate creates a similar field in opp direction.)

However, the E-field in the region to the left of plate 1 is due to the E-field of plate 2, which is sigma/e0 leftwards.
Thus, the average E-field around plate 1 is given by (0 + sigma/e0) /2. The force on plate 1 is in fact due to the field of plate 2.
 
phantomvommand said:
The plates are insulating here, so the charge of Q remains solely on 1 side of the plate. The other side has 0 charge.
The charge doesn't know it is on the surface of a plate. Half the field lines will go each side. Insulators don't block fields.
 
  • Like
Likes   Reactions: phantomvommand

Similar threads

  • · Replies 16 ·
Replies
16
Views
1K
  • · Replies 26 ·
Replies
26
Views
3K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 18 ·
Replies
18
Views
3K
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
6K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
10
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K