Force on a particle of a linear charge distribution

Click For Summary
SUMMARY

The discussion focuses on calculating the force exerted by a linear charge distribution on a point charge. The linear charge distribution has a total charge of ##Q=3.0\, \mu \textrm{C}## uniformly spread over a length of ##L=60\, \textrm{cm}##. The point charge, ##q=5.0\, \mu \textrm{C}##, is located at a distance of ##30\, \textrm{cm}## from one end of the distribution. The calculated electric field results in a force of ##F=-0.5\, \textrm{N}##, with the negative sign indicating direction. The issue raised pertains to the evaluation of the integral used to derive the electric field, specifically the antiderivative of the function involved.

PREREQUISITES
  • Understanding of electric fields and forces in electrostatics
  • Familiarity with calculus, particularly integration techniques
  • Knowledge of linear charge density concepts
  • Proficiency in using Coulomb's law for point charges
NEXT STEPS
  • Review the derivation of electric fields from continuous charge distributions
  • Study the method of evaluating improper integrals in electrostatics
  • Learn about the implications of sign in force calculations in physics
  • Explore the relationship between electric field and potential energy in electrostatics
USEFUL FOR

Students and professionals in physics, particularly those studying electromagnetism, as well as educators seeking to clarify concepts related to electric fields and forces from charge distributions.

Guillem_dlc
Messages
188
Reaction score
17
Thread moved from the technical forums to the schoolwork forums
Hello!

I am trying to solve this exercise of the electric field, but it comes out changed sign and I don't know why.

Statement: On a straight line of length ##L=60\, \textrm{cm}## a charge ##Q=3,0\, \mu \textrm{C}## is uniformly distributed. Calculate the force this linear distribution makes on a point charge ##q=5,0\, \mu \textrm{C}## in the same direction of the thread and at a distance of ##30\, \textrm{cm}## from one of its ends.
Captura de 2022-03-20 16-08-22.png


My solution: First, we want to look at how much the electric field is worth at different points. We choose an infinitesimal charge ##dq## any at any point in the thread ##(x,0)##, and we assign to the point charge any ##(x_0,0)## that fulfils the condition ##x_0>L##. According to this, we can already define the vector ##\overrightarrow{r}## that arises in the charge differential and ends at point ##(x_0,0)##:
$$\overrightarrow{r}=(x_0,0)-(x,0)=(x_0-x,0)$$
$$r=x_0-x\rightarrow \widehat{r}=\dfrac{\overrightarrow{r}}{r}=(1,0)$$
$$\lambda =\dfrac{dq}{dl}\rightarrow dq=\lambda dl$$
where ##dl=dx## because we only have component ##x##.
$$E=\int_L k\dfrac{dq}{r^2}\widehat{r}=k\int_0^L \dfrac{\lambda \, dx}{(x_0-x)^2}(1,0)$$
Then,
$$E=k\lambda \widehat{i}\int_0^L \dfrac{1}{(x_0-x)^2}\, dx = k\lambda \widehat{i} \left[ \boxed{\dfrac{-1}{(x_0-x)}}\right]_0^L = k\lambda \widehat{i} \left( \dfrac{-1}{x_0-L}+\dfrac{1}{x_0}\right)$$
$$=\dfrac{-k\lambda}{x_0-L}+\dfrac{k\lambda}{x_0}=\dfrac{-k\lambda}{0,3}+\dfrac{k\lambda}{0,9}=\dfrac{-3k\lambda +k\lambda}{0,9}=$$
$$=\dfrac{-2k\lambda}{0,9}=-100000\, \textrm{V}/\textrm{m},$$
using that ##\lambda =\dfrac{dq}{dL}=\dfrac{Q}{L}=0,000005##. Finally,
$$F=qE=-0,5\, \textrm{N}$$

My question: It gives me good, but it's changed in sign and I think that's why I've marked in the integral, but I'd say I've done it well...
 
Physics news on Phys.org
Guillem_dlc said:
$$E=k\lambda \widehat{i}\int_0^L \dfrac{1}{(x_0-x)^2}\, dx = k\lambda \widehat{i} \left[ \boxed{\dfrac{-1}{(x_0-x)}}\right]_0^L$$

You are right to suspect that the problem is with the evaluation of the integral. You got $$\dfrac{-1}{(x_0-x)}$$ for an antiderivative of $$\dfrac{1}{(x_0-x)^2}$$

Does the derivative of ##\dfrac{-1}{(x_0-x)}## with respect to ##x## equal ##\dfrac{1}{(x_0-x)^2}##?
 
Last edited:
  • Like
Likes   Reactions: vanhees71

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 18 ·
Replies
18
Views
1K
Replies
23
Views
4K
Replies
4
Views
3K
Replies
13
Views
2K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
2K