Force on a particle of a linear charge distribution

AI Thread Summary
The discussion centers on calculating the force exerted by a linear charge distribution on a point charge. The user encounters a sign issue in their electric field calculation, specifically in the evaluation of an integral related to the electric field. They derive the electric field expression but question the correctness of their antiderivative, which leads to a negative force result. A response points out that the user should verify whether the derivative of their antiderivative matches the original integrand, indicating a potential error in their integration process. The discussion emphasizes the importance of careful evaluation of integrals in electrostatics calculations.
Guillem_dlc
Messages
188
Reaction score
17
Thread moved from the technical forums to the schoolwork forums
Hello!

I am trying to solve this exercise of the electric field, but it comes out changed sign and I don't know why.

Statement: On a straight line of length ##L=60\, \textrm{cm}## a charge ##Q=3,0\, \mu \textrm{C}## is uniformly distributed. Calculate the force this linear distribution makes on a point charge ##q=5,0\, \mu \textrm{C}## in the same direction of the thread and at a distance of ##30\, \textrm{cm}## from one of its ends.
Captura de 2022-03-20 16-08-22.png


My solution: First, we want to look at how much the electric field is worth at different points. We choose an infinitesimal charge ##dq## any at any point in the thread ##(x,0)##, and we assign to the point charge any ##(x_0,0)## that fulfils the condition ##x_0>L##. According to this, we can already define the vector ##\overrightarrow{r}## that arises in the charge differential and ends at point ##(x_0,0)##:
$$\overrightarrow{r}=(x_0,0)-(x,0)=(x_0-x,0)$$
$$r=x_0-x\rightarrow \widehat{r}=\dfrac{\overrightarrow{r}}{r}=(1,0)$$
$$\lambda =\dfrac{dq}{dl}\rightarrow dq=\lambda dl$$
where ##dl=dx## because we only have component ##x##.
$$E=\int_L k\dfrac{dq}{r^2}\widehat{r}=k\int_0^L \dfrac{\lambda \, dx}{(x_0-x)^2}(1,0)$$
Then,
$$E=k\lambda \widehat{i}\int_0^L \dfrac{1}{(x_0-x)^2}\, dx = k\lambda \widehat{i} \left[ \boxed{\dfrac{-1}{(x_0-x)}}\right]_0^L = k\lambda \widehat{i} \left( \dfrac{-1}{x_0-L}+\dfrac{1}{x_0}\right)$$
$$=\dfrac{-k\lambda}{x_0-L}+\dfrac{k\lambda}{x_0}=\dfrac{-k\lambda}{0,3}+\dfrac{k\lambda}{0,9}=\dfrac{-3k\lambda +k\lambda}{0,9}=$$
$$=\dfrac{-2k\lambda}{0,9}=-100000\, \textrm{V}/\textrm{m},$$
using that ##\lambda =\dfrac{dq}{dL}=\dfrac{Q}{L}=0,000005##. Finally,
$$F=qE=-0,5\, \textrm{N}$$

My question: It gives me good, but it's changed in sign and I think that's why I've marked in the integral, but I'd say I've done it well...
 
Physics news on Phys.org
Guillem_dlc said:
$$E=k\lambda \widehat{i}\int_0^L \dfrac{1}{(x_0-x)^2}\, dx = k\lambda \widehat{i} \left[ \boxed{\dfrac{-1}{(x_0-x)}}\right]_0^L$$

You are right to suspect that the problem is with the evaluation of the integral. You got $$\dfrac{-1}{(x_0-x)}$$ for an antiderivative of $$\dfrac{1}{(x_0-x)^2}$$

Does the derivative of ##\dfrac{-1}{(x_0-x)}## with respect to ##x## equal ##\dfrac{1}{(x_0-x)^2}##?
 
Last edited:
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top