Forces when car wheels "lay rubber"

AI Thread Summary
When a car accelerates and the wheels begin to slip, a counterclockwise torque must be applied to induce angular acceleration. The friction force at the wheels acts to the right, providing a counterclockwise torque that balances the applied torque. The maximum friction force occurs when it equals the product of the coefficient of friction and the normal force, allowing for net angular acceleration. The discussion clarifies that while the friction force is the only horizontal force on the car, the torque from the axle can be vertical, enabling the generation of a clockwise torque while maintaining balance. Overall, the interaction of these forces and torques is crucial for understanding the dynamics of slipping wheels during acceleration.
vparam
Messages
17
Reaction score
3
Homework Statement
If the coefficient of static friction between tires and pavement is 0.65, calculate the minimum torque that must be applied to the 66 cm diameter tire of a 950 kg automobile in order to "lay rubber" (make the wheels spin, slipping as the car accelerates). Assume each wheel supports an equal share of the weight.
Relevant Equations
∑T = Iα
Suppose the car is moving to the right, so if the wheels roll without slipping, they are rolling clockwise. To get the wheel to slip, a counterclockwise torque would need to be applied to cause the wheel to have some angular acceleration. If the wheel was slipping, then the bottom of the wheel would move left with respect to the pavement, which means that friction would point to the right, providing a counterclockwise torque to offset the applied torque.

When the friction force maxes out, in other words F_f = μF_n, then an applied torque can exceed the frictional torque and cause net angular acceleration and the wheel to slip. In that sense, we set the two torques to be equal, and solve, which gets the correct answer according to the textbook.

However, I'm confused about why this works. If this is happening as the car accelerates as the problem suggests, wouldn't there need to be a net rightward force? Then, the translational velocity also increases, and can "keep up" with the increasing angular speed. Wouldn't this mean that the conditions laid out wouldn't work? In other words, how could this counterclockwise torque cause the car to accelerate to the right (more accurately, the force that causes the torque), while also getting the wheels to slip?
 
Last edited by a moderator:
Physics news on Phys.org
vparam said:
To get the wheel to slip, a counterclockwise torque would need to be applied
If you mean applied from the axle then you mean clockwise, I hope.
vparam said:
wouldn't there need to be a net rightward force?
There is. The ##F_fs## on the tyres are the only horizontal forces on the car as a whole.
 
haruspex said:
If you mean applied from the axle then you mean clockwise, I hope.
Yes, sorry that torque should be clockwise.
haruspex said:
There is. The ##F_fs## on the tyres are the only horizontal forces on the car as a whole.
I think my main point of confusion is how would F_fs be the only force. Wouldn't there also need to be another horizontal force on the wheels/car to apply the clockwise torque?

Edit: After trying this out on paper, I realized that this torque generating force could also be purely vertical rather than horizontal. In this case, F_f would be the only force acting in the horizontal direction. Is this a valid interpretation of what you mean?
 
vparam said:
this torque generating force could also be purely vertical
A torque is neither horizontal nor vertical. If the axle applies a clockwise torque to the wheel then the wheel exerts an anticlockwise torque on the axle. This pushes down the back of the car and lifts the front. So the normal forces on the wheels have a net clockwise torque on the car. As long as the front wheels stay in contact with the ground, this balances the anticlockwise torque on the car from the frictional forces.
 
haruspex said:
A torque is neither horizontal nor vertical. If the axle applies a clockwise torque to the wheel then the wheel exerts an anticlockwise torque on the axle. This pushes down the back of the car and lifts the front. So the normal forces on the wheels have a net clockwise torque on the car. As long as the front wheels stay in contact with the ground, this balances the anticlockwise torque on the car from the frictional forces.
What about the force that the axle exerts on the wheel? Would that need to be vertical in order for the net force on the wheel to equal the friction force, while still being able to generate a clockwise torque?
 
vparam said:
What about the force that the axle exerts on the wheel? Would that need to be vertical in order for the net force on the wheel to equal the friction force, while still being able to generate a clockwise torque?
The forces from the wheels on the axle will be vertical forces to carry the weight of the car and horizontal forces to accelerate the car (car excluding wheels in each case).
Forces from axle on wheels are necessarily equal and opposite to those.
The torques are in addition to the forces.
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top