- #1

- 6

- 0

I want to find the Fourier coefficients for the following signal:

[tex] \cos(2 \pi t)^2 [/tex]

Can I simply use the identity?:

[tex] \frac{1}{2} + \frac{\cos(2 \pi t)}{2} [/tex]

And then use the complex definition:

[tex] \frac{1}{2} + \frac{1}{4} (\exp{j2 \pi t} + \exp{-j2 \pi t}) [/tex]

From the synthesis equation I can get:

[tex] a_0 = \frac{1}{2} [/tex], [tex] a_1 = \frac{3}{4} [/tex]

Thanks

[tex] \cos(2 \pi t)^2 [/tex]

Can I simply use the identity?:

[tex] \frac{1}{2} + \frac{\cos(2 \pi t)}{2} [/tex]

And then use the complex definition:

[tex] \frac{1}{2} + \frac{1}{4} (\exp{j2 \pi t} + \exp{-j2 \pi t}) [/tex]

From the synthesis equation I can get:

[tex] a_0 = \frac{1}{2} [/tex], [tex] a_1 = \frac{3}{4} [/tex]

Thanks

Last edited: