MHB Fourier Transform of a function squared.

Dustinsfl
Messages
2,217
Reaction score
5
Consider \(u_t = -u_{nxxx} - 3(u^2)_{nx}\).

The Fourier Transform is linear so taking the Inverse Fourier transform of the Fourier Transform on the RHS we have
\begin{align}
-\mathcal{F}^{-1}\left[\mathcal{F}\left[u_{nxxx} - 3(u^2)_{nx}\right]\right] &= -\mathcal{F}^{-1} \left[\mathcal{F}\left[(ik)^3u\right]\right] - 3\mathcal{F}^{-1}\left[\mathcal{F} \left[(ik)u^2\right]\right]\\
&= ik^3\mathcal{F}^{-1}\left[\mathcal{F}(u)\right] - ik\mathcal{F}^{-1}\left[\mathcal{F}(u^2)\right]
\end{align}
  1. Is the above reduction correct?
  2. Can \(\mathcal{F}(u^2) = \mathcal{F}(u\cdot u)\) be further reduced?
 
Physics news on Phys.org
Yes, the reduction is correct. You cannot further reduce \(\mathcal{F}(u^2) = \mathcal{F}(u\cdot u)\).
 
I posted this question on math-stackexchange but apparently I asked something stupid and I was downvoted. I still don't have an answer to my question so I hope someone in here can help me or at least explain me why I am asking something stupid. I started studying Complex Analysis and came upon the following theorem which is a direct consequence of the Cauchy-Goursat theorem: Let ##f:D\to\mathbb{C}## be an anlytic function over a simply connected region ##D##. If ##a## and ##z## are part of...
Back
Top