MHB Fourier Transform of a function squared.

Dustinsfl
Messages
2,217
Reaction score
5
Consider \(u_t = -u_{nxxx} - 3(u^2)_{nx}\).

The Fourier Transform is linear so taking the Inverse Fourier transform of the Fourier Transform on the RHS we have
\begin{align}
-\mathcal{F}^{-1}\left[\mathcal{F}\left[u_{nxxx} - 3(u^2)_{nx}\right]\right] &= -\mathcal{F}^{-1} \left[\mathcal{F}\left[(ik)^3u\right]\right] - 3\mathcal{F}^{-1}\left[\mathcal{F} \left[(ik)u^2\right]\right]\\
&= ik^3\mathcal{F}^{-1}\left[\mathcal{F}(u)\right] - ik\mathcal{F}^{-1}\left[\mathcal{F}(u^2)\right]
\end{align}
  1. Is the above reduction correct?
  2. Can \(\mathcal{F}(u^2) = \mathcal{F}(u\cdot u)\) be further reduced?
 
Physics news on Phys.org
Yes, the reduction is correct. You cannot further reduce \(\mathcal{F}(u^2) = \mathcal{F}(u\cdot u)\).
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K