- #1

- 17

- 0

## Homework Statement

Find the Fourier transform of [tex] H(x-a)e^{-bx}, [/tex] where H(x) is the Heaviside function.

## Homework Equations

[tex] \mathcal{F}[f(t)]=\frac{1}{2 \pi} \int_{- \infty}^{\infty} f(t) \cdot e^{-i \omega t} dt [/tex]

Convolution theory equations that might be relevant:

[tex] \mathcal{F}[f(t) \cdot g(t)] = \mathcal{F}[f(t)] * \mathcal{F}[g(t)] [/tex]

[tex] \mathcal{F}[e^{\alpha t} \cdot f(t)] = \mathcal{F}[f(t+\alpha t)] [/tex]

Derivative of the Heaviside function:

[tex] H'(t) = \delta(t) [/tex]

where [itex] \delta(t) [/itex] is the Dirac Delta function.

## The Attempt at a Solution

Using the first relevant equation, and assuming the Heaviside function simply changed the boundary conditions from a to infinity:

[tex] \mathcal{F}[H(x-a)e^{-bx}]=\frac{1}{2 \pi} \int_{a}^{\infty} e^{-bx} \cdot e^{-i \omega t} dt [/tex]

[tex] = - \frac{1}{2 \pi} \left[\frac{i e^{-bx-i \omega t}}{\omega} \right]_{a}^{\infty} = - \frac{i e^{-bx-i \omega a}}{\sqrt{2\pi} \omega} [/tex]

This was not right so I tried to take the integral of the Heaviside function via integration by parts:

[tex] \mathcal{F}[f(t)]=\frac{1}{2 \pi} \int_{- \infty}^{\infty}H(x-a)e^{-bx-i \omega t} dt [/tex]

[tex] =\frac{1}{2 \pi} \left[\frac{-H(x-a)ie^{-bx-i \omega t}}{\omega} \right]_{-\infty}^{\infty} - \int_{\infty}^{\infty} \delta(x-a)e^{-bx-i \omega t} [/tex]

At this point I could go on with the integration however I'm unsure if it'll lead to the right answer or if what I'm doing makes sense. I have considered using the last equation in part of the convolution theory section, to get an integral of perhaps [itex] H(x-a-i \omega t) [/itex] but that doesn't seem right either.. I am unsure how to take the Fourier transformation of the Heaviside function, any help will be gladly appreciated.