Fractal Geometry: Uses, Math & Fascinating Patterns

  • Thread starter Thread starter Bogrune
  • Start date Start date
  • Tags Tags
    Fractal Geometry
Bogrune
Messages
60
Reaction score
0
The very first time I ever heard about fractals was in my junior year in high school in my Algebra II class when we were studying complex numbers. I was fascinated by these wonderous objects and I've had many questions about them ever since.
Though two of my main questions have always been: how are they used in our world, and how does Fractal Geometry describe them mathematically?
 
Mathematics news on Phys.org
Well, thanks for the link. I know that many fractals can be expained mathematically by an exponential expression, but can anyone tell me what Fractal Geometry is like? Also, what does it take to comprehend it (Algebra, Trigonometry, Calculus)?
 
"can anyone tell me what Fractal Geometry is like?"
Generally it is geometry that is rough, like a http://en.wikipedia.org/wiki/Koch_snowflake" .
It doesn't have to be regular, for example a coastline is fractal (over a certain range).

"How are they used in the world?"
Well fractals often are optimal in some regard, for example maximum strength to weight ratio gives fractal-like structures in bird bones and in the Eiffel tower. Maximum area coverage per length gives the fractal tree-like shape of rivers... and similarly for trees.
 
Last edited by a moderator:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
2
Views
2K
Replies
12
Views
3K
Replies
4
Views
3K
Replies
8
Views
4K
Replies
1
Views
1K
Replies
2
Views
2K
Back
Top