Find the Angle for Maximum x Position in Free Fall Motion

AI Thread Summary
The discussion focuses on determining the angle of inclination that maximizes the x position of a particle in free fall motion, given its initial height, velocity, and vertical acceleration. The equations of motion are provided, leading to a derived expression for the x position at the time the particle reaches the ground. The challenge lies in simplifying the equation to solve for the angle that maximizes x1, particularly when the initial height is not zero. A differentiation approach is suggested to find the maximum x1, but participants express difficulty in finding a straightforward solution for the angle. The conversation highlights the complexity of the problem and the lack of an easy method for deriving the optimal angle.
agro
Messages
46
Reaction score
0
Consider a particle located at (x0, y0), having inital velocity v0, and the angle of inclination of the velocity vector is [the]. The particle is subjected to a vertical acceleration of -g. It's equation of motion is...

x = x0 + v0*cos[the]*t
y = y0 + v0*sin[the]*t - 0.5*g*t2

If t>0, the particle will reach y = 0 when
t = {v0*sin[the] + sqrt((v0*sin[the])2+2*g*y0)}/g

(found using the abc formula)

If we call the time t1, then at that time the x position of the particle is (call it x1)...

x1 = x0 + v0*cos[the]*t1

The question is: at initial height y0, what angle will make x1 maximum?

I found it very hard to make the equation simple enough to be able to solve this problem... Can anyone help me?

PS: in the case of y0 = 0, the problem will be easy to solve, with the answer 45 degrees.

Thank you...
 
Last edited:
Mathematics news on Phys.org
Replacing t1 in x1= x0+ v0 cos[theta] t1

with t1= (v0/g)sin[theta]+ (1/g)(v0^2 sin^2 [theta]+ (gyo/2))^(1/2)
(the positive time at which y= 0) gives

x1= x0+ (v0^2/g)sin[theta]cos[theta]+(v0/g)sin[theta](v0^2sin^2[theta]+ (gy0/2))

Differentiating,

dx1/d[theta]= (v0^2/g)(cos^2[theta]- sin^2[theta])+ (v0/g)cos[theta](v0sin^2[theta]+(gy0/2))^(1/2)+ vo^3/g sin^2[theta]cos[theta](v0^2sin^2[theta] + (gy0/2))^(-1/2) = 0 at maximum x1.

I'm with you! I don't see any "nice" way of solving that for [theta]. Do you have any reason to think that there should be?
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top