Free surface charges on concentric cylinders

Click For Summary
SUMMARY

The discussion revolves around calculating free and bound surface charges on concentric cylinders, specifically a non-conducting cylindrical rod with radius a and a coaxial grounded cylindrical metal sheet with radius b, filled with a dielectric of permittivity ε. The key equations utilized include Gauss's law, which relates electric field discontinuities to surface charge densities, and the relationship between free charge density and polarization charge. The participants clarify that the charge density ρ refers to free charge embedded in the rod and emphasize the importance of distinguishing between free and bound charges in the context of electrostatics.

PREREQUISITES
  • Understanding of Gauss's Law in electrostatics
  • Familiarity with dielectric materials and their properties
  • Knowledge of electric field and displacement field relationships
  • Concept of polarization charge and its relation to bound charge
NEXT STEPS
  • Study the application of Gauss's Law in cylindrical coordinates
  • Learn about the properties of dielectrics and their impact on electric fields
  • Explore the mathematical derivation of surface charge densities in electrostatics
  • Investigate the relationship between free charge and bound charge in dielectric materials
USEFUL FOR

Students and professionals in electrical engineering, physicists, and anyone involved in electrostatics and dielectric materials who seeks to deepen their understanding of charge distributions in cylindrical geometries.

Philip Land
Messages
56
Reaction score
3

Homework Statement


Consider an infinitely long cylindrical rod with radius a carrying a uniform charge density ##\rho##. The rod is surrounded by a co-axial cylindrical metal-sheet with radius b that is connected to ground. The volume between the sheet and the rod is filled with a dielectric, ##\epsilon##.

Calculate the free and bound surface charges at r=a and r=b

Homework Equations


The Attempt at a Solution


[/B]
I tried to use discontinuity in E.

From Gauss. ##\nabla \cdot E = \frac{\rho}{\epsilon_0} \Rightarrow \oint E \cdot ds = \frac{Q}{\epsilon_0} ##

##\Rightarrow (E_{above}-E_{below}) = \frac{\sigma_b}{\epsilon_0}##.

For r= a, ##\sigma_b = \frac{Q}{2 \pi s*l} (\frac{1}{\epsilon_r} - 1)##

So now we have the bound charge per unit area.

By integrating we ca get the total bound surface charge, ##\sigma_{bt} = Q(\frac{1}{\epsilon_r}-1)##.

I'm not sure this is right. But if it is, how do I now get the ##free## surface charge?

And I do remember that either the bound charge or free charge should be zero for a grounded material, but not which one.
 
  • Like
Likes   Reactions: Delta2
Physics news on Phys.org
I think you omitted a step: ## \nabla \cdot D=\rho_{free}=0 ## at and around ## r=a ##, so that ## D_{above}=D_{below} ## which gives ## \epsilon_o \epsilon_r E_{above}=\epsilon_o E_{below} ##. (And then ## E_{below} ## is computed from knowing ## \rho ## which was given). ## \\ ## To get the polarization surface charge density at ## r=b ##, the polarization charge per unit length at ## r=b ## must be equal and opposite that at ## r=a ##. (Recommend don't use ## \sigma_b ## at ## r=a ##. Better to call it ## \sigma_{pa} ##.(## p ## for polarization). ## \\ ## The free charge at ## r=b ## is the easiest. If the outside is grounded, by symmetry, the net charge enclosed must be zero to have ## E =0 ## outside of the coaxial metal layer, as well as inside this metallic layer. The inside surface of the metallic layer at ## r=b ## will thereby have some charge.## \\ ## Additional item: For charge per unit length and surface charge per unit length, suggest using ## \lambda ##. Do not use ## \sigma ## for that. ## \sigma ## is a surface charge density per unit area. e.g. For the core, you would have ## \lambda_{core}=\rho \, \pi \, a^2 ##. Also ## \lambda_{pa}=\sigma_{pa} \, 2 \pi \, a ##, etc.
 
Last edited:
  • Like
Likes   Reactions: Philip Land and Delta2
I am a bit lost here, the central cylindrical rod is conducting/metal or non conducting? And the charge density given as ##\rho## is equal to ##\rho_{free}## or not?
 
@Delta² The central rod is ## \rho_{free} ## and non-conducting. It's free charge, (as opposed to polarization type charge), but is not free to move. It is embedded in the rod. ## \\ ## And it's not a polarization type charge that forms as the result of dipoles in the material.
 
  • Like
Likes   Reactions: Delta2
Charles Link said:
@Delta² The central rod is ## \rho_{free} ## and non-conducting. It's free charge, (as opposed to polarization type charge), but is not free to move. It is embedded in the rod. ## \\ ## And it's not a polarization type charge that forms as the result of dipoles in the material.
Ehm, I don't understand then why in your first equation you say ##\rho_{free}=0## at ##r=a##, ok its not free to move, but still it should be ##\rho_{free}=\rho## at ##r=a## , right or wrong?
 
Charles Link said:
I think you omitted a step: ## \nabla \cdot D=\rho_{free}=0 ## at and around ## r=a ##, so that ## D_{above}=D_{below} ## which gives ## \epsilon_o \epsilon_r E_{above}=\epsilon_o E_{below} ##. (And then ## E_{below} ## is computed from knowing ## \rho ## which was given). ## \\ ## To get the polarization surface charge density at ## r=b ##, the polarization charge per unit length at ## r=b ## must be equal and opposite that at ## r=a ##. (Recommend don't use ## \sigma_b ## at ## r=a ##. Better to call it ## \sigma_{pa} ##.(## p ## for polarization). ## \\ ## The free charge at ## r=b ## is the easiest. If the outside is grounded, by symmetry, the net charge enclosed must be zero to have ## E =0 ## outside of the coaxial metal layer, as well as inside this metallic layer. The inside surface of the metallic layer at ## r=b ## will thereby have some charge.## \\ ## Additional item: For charge per unit length, suggest using ## \lambda ##. Do not use ## \sigma ## for that. ## \sigma ## is a surface charge density per unit area. e.g. For the core, you would have ## \lambda_{core}=\rho \, \pi \, a^2 ##. Also ## \lambda_{pa}=\sigma_{pa} \, 2 \pi \, a ##, etc.

By surface charge ##density## do you mean surface charge, because it's only the surface charge I want.

Is polarization charge same as bound charge? I failed to understand how to use the ##\lambda## concept.

However, I did a new calculation, I did a little wrong above.

See picture.

So now I think I have the total surface charge for both the cylinders. However, there's still bound charge present. How do I differentiate bound and free charge, so I eventually can extract only the free surface charge from the total surface charge?
IMG_0516.JPG
 

Attachments

  • IMG_0516.JPG
    IMG_0516.JPG
    24.9 KB · Views: 542
  • IMG_0516.JPG
    IMG_0516.JPG
    24.9 KB · Views: 416
Your calculations are leaving off an important step or two in the solution. I recommend you use the equation ## \nabla \cdot D=\rho_{free} ## where ## D=\epsilon_o \epsilon_r E ##. You can do the calculation just using ## E ## and deriving everything else from ## -\nabla \cdot P=\rho_p ##, but it's easier to use ## D ##. ## \\ ## With this equation, Gauss' law reads ## \int D \cdot dA=Q_{free} ##. You seem to get the correct answer for ## \sigma_pa ##, but you aren't showing the steps to get there. ## \\ ## And yes, your equation ## E_{above}-E_{below}=\frac{\sigma_{pa}}{\epsilon_o} ## is correct. ## \\ ## And, yes, it is bound polarization charge, usually called just simply polarization charge. ## \\ ## Using the ## D ## form of Gauss' law with a pillbox around ## r=a ## gives: ## \\ ## ## \epsilon_o \epsilon_r E_{above}-\epsilon_o E_{below}=0 ##, so that ## E_{above}=\frac{E_{below}}{\epsilon_r} ##. ## \\ ## This gives ## E_{below}(\frac{1}{\epsilon_r}-1)=\frac{\sigma_{pa}}{\epsilon_o} ##. ## \\ ## ## E_{below} ## is readily found: (Edit) ## E_{below} 2 \pi \, a L=\frac{\rho \pi a^2 \, L }{\epsilon_o} ##. ## \\ ## Now we can simply solve for ## \sigma_{pa} ##. (I think you got that part correct). ## \\ ## Because this is polarization of the dielectric between ## r=a ## and ## r=b ##, ## \lambda_{pa} L=-\lambda_{pb} L ##. ## \\ ## (It can be shown that ## -\nabla \cdot P=\rho_p=0 ## inside the dielectric, so that the only polarization charge is surface polarization charges. The net polarization charge must be zero. Alternatively, ## \int D \cdot dA =Q_{free} ## so that ##\epsilon_o \epsilon_r E(r) 2 \pi r=\rho \, \pi a^2 ##. We can compute ## \nabla \cdot E(r)=\frac{\rho_{total}}{\epsilon_o}=0 ## in the dielectric, (google "divergence in cylindrical coordinates"), so that ## \rho_p =0 ## in the dielectric. ) ## \\ ## This is why you need the surface charge per unit length.## \\ ## Now ## \lambda_{pa}=\sigma_{pa} 2 \pi a ## and ## \lambda_{pb}=\sigma_{pb} 2 \pi b ##. You need these last two relations to solve for ## \sigma_{pb} ## from ## \sigma_{pa} ##.
 
Last edited:
  • Like
Likes   Reactions: Delta2 and Philip Land

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 35 ·
2
Replies
35
Views
4K
Replies
11
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 23 ·
Replies
23
Views
2K
Replies
11
Views
1K
  • · Replies 9 ·
Replies
9
Views
1K
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
5K
  • · Replies 5 ·
Replies
5
Views
650