In the context of families of seminorms I've come across these two definitions;(adsbygoogle = window.adsbygoogle || []).push({});

i) a family of seminorms [itex]\{ p_I \}[/itex] is separating if [itex]p_I = 0[/itex] for all [itex]I[/itex] implies [itex]x=0[/itex].

ii) for a family of seminorms, when for every [itex]x \in X / \{ 0 \}[/itex] there is a seminorm [itex]p_I[/itex] such that [itex]p_I (x) > 0[/itex].

It is easy to show these imply each other. I have now come across another definition for a family of functions to be separating (not necessarily seminorms):

iii) a family of functions [itex]\{ p_I \}[/itex] is separating if for each pair of points [itex]x \not= y[/itex] we find [itex]p_I[/itex] such that [itex]p_I (x) \not= p_I (y)[/itex]

It is easy to show iii) implies ii) if you assume the functions of condition iii) satisfy [itex]p_I (0) = 0[/itex]. My question is how condition iii) could be implied by either of the others.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Functions that separate points

**Physics Forums | Science Articles, Homework Help, Discussion**