coki2000
- 91
- 0
Hello,
I wonder that the gauss' theorem for gravitational force area.
\int\int_S \vec{g}\hat{n}dS=-4\pi GM=\int\int\int_V \vec{\nabla}\stackrel{\rightarrow}{g}dV
\vec{g}=-G\frac{M}{r^2}\hat{r}\Rightarrow\hat{r}=\frac{\vec{r}}{r}\Rightarrow\vec{g}=-G\frac{M}{r^3}\vec{r}
for \vec{r}=x\hat{x}+y\hat{y}+z\hat{z} and r=\sqrt{x^2+y^2+z^2}
\vec{\nabla}\vec{g}=-\frac{\partial}{\partial x}G\frac{M}{r^3}x-\frac{\partial }{\partial y}G\frac{M}{r^3}y-\frac{\partial }{\partial z}G\frac{M}{r^3}z=0
The divergence of g has 0 so \int\int_S\vec{g}\hat{n}dS=0
Where do I wrong please help me.Thanks.
I wonder that the gauss' theorem for gravitational force area.
\int\int_S \vec{g}\hat{n}dS=-4\pi GM=\int\int\int_V \vec{\nabla}\stackrel{\rightarrow}{g}dV
\vec{g}=-G\frac{M}{r^2}\hat{r}\Rightarrow\hat{r}=\frac{\vec{r}}{r}\Rightarrow\vec{g}=-G\frac{M}{r^3}\vec{r}
for \vec{r}=x\hat{x}+y\hat{y}+z\hat{z} and r=\sqrt{x^2+y^2+z^2}
\vec{\nabla}\vec{g}=-\frac{\partial}{\partial x}G\frac{M}{r^3}x-\frac{\partial }{\partial y}G\frac{M}{r^3}y-\frac{\partial }{\partial z}G\frac{M}{r^3}z=0
The divergence of g has 0 so \int\int_S\vec{g}\hat{n}dS=0
Where do I wrong please help me.Thanks.