Gauss's Trick - Arithmetic Sums

  • Thread starter Thread starter Johnathanrs
  • Start date Start date
  • Tags Tags
    Arithmetic Sums
AI Thread Summary
Gauss's Trick simplifies the calculation of the sum of a series of integers using the formula n/2(f+l), where n is the total number of integers, f is the first integer, and l is the last integer. The method involves pairing the first and last integers to reveal a consistent sum across the pairs, demonstrating that the total can be calculated efficiently. By writing the integers in ascending and descending order, one can observe that each column sums to the same value, reinforcing the pairing concept. This approach not only provides a quick way to calculate sums but also illustrates the underlying arithmetic principles. Understanding this method can enhance mathematical comprehension and problem-solving skills.
Johnathanrs
Messages
1
Reaction score
0
I can't grasp the underlying process on how this is working.

n/2(f+l) = algorithm sum of all integers
n= number of all integers
f= first integer
l= last integer

Example: 1, 2, 3, 4
4/2(1+4)
2(5) = 10

I know how to do it, but I don't really understand how to actually do it. Am I just too stupid?

Why do I need to split the sum of all integers?
Why am I adding the first + last integer?
Why when I times them together does it work?
How did he create the algorithm for this?
 
Mathematics news on Phys.org
In order to see how this works, write down the string of integers in two different ways:

Code:
 1  2  3  4  5  6  7  8  9  10
10  9  8  7  6  5  4  3  2   1

What do you notice about the sum of each column of numbers?
 
What Gauss did (according to the usual story) was to pair off the numbers like this.
Suppose you want to sum the 9 numbers 7 8 9 10 11 12 13 14 15
7 + 15 = 22
8 + 14 = 22
9 + 13 = 22
10 + 12 = 22
11 = 22/2
So the sum = (9/2)(22) = (9/2)(7+15)
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top