$gcd(2002+2,2002^2+2,\dots,2002^{2002}+2)$

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
Albert1
Messages
1,221
Reaction score
0
find: $gcd(2002+2,2002^2+2,2002^3+2,---------------,2002^{2002}+2)$
 
Mathematics news on Phys.org
Albert said:
find: $gcd(2002+2,2002^2+2,2002^3+2,---------------,2002^{2002}+2)$
we have $2002^2+2 = (2002^2-4) + 6 = (2002+2)(2002-2)+ 6$
hence $gcd(2002+2, 2002^2+2) = gcd(2002+2, (2002+2)(2002-2) + 6 = gcd(2002+2,6) = gcd(2004,6) = gcd( 6 * 334,6) = 6$
now each of $2002^n+2$ is divisible by 6 because it is even and and $2002$ is $1$ mod 3 and so $2002^n$ is
1 mod 3 and hence $2002^n+2$ is 0 mod 3 so divisible by 6
so GCD of above all that is $gcd(2002+2,2002^2+2,2002^3+2,---------------,2002^{2002}+2)= 6$
 

Similar threads

  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 35 ·
2
Replies
35
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
8
Views
7K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K