Gearbox design-Is this design possible to make the output shaft thin?

AI Thread Summary
The discussion focuses on the feasibility of designing a gearbox with a thin output shaft, emphasizing that there is no single correct design. Proper alignment and positioning of bearings are crucial to handle forces without increasing stress on the shaft. The design must accommodate quick belt changes, potentially using a compression strut and self-aligning bearings to manage belt tension. Key specifications such as power transmission, output shaft RPM, torque, pulley diameter, and belt tension are essential for determining the minimum shaft diameter. Careful alignment is necessary to ensure the longevity of the coupling and overall system performance.
a61098417
Messages
1
Reaction score
0
TL;DR Summary
The output shaft of the gearbox undergoes torque and bending force(tensile force of the belt)(I use belt after gearbox). If I mount/fix the pulley on other things instead of the output shaft, the belt won't bend the shaft. Thus, the output shaft gets torque only. Is my design correct?
Is this design correct?
 
Engineering news on Phys.org
Welcome to PhysicsForums. Can you post a drawing or picture of your arrangement, and comment on what kind of bearings you are using at each joint? You can use the "Attach files" link below the Edit window to upload PDF or JPEG files.
 
  • Like
Likes Lnewqban and Dr.D
a61098417 said:
Is this design correct?
There are many solutions. There is no one correct design.

Where an additional bearing is provided, it must be positioned and aligned correctly, or it will not carry the required forces without increasing stresses in the shaft. Will you have a flexible coupling between the gearbox and the pulley shaft?

The problem with supporting the output shaft on both sides of the belt pulley is that you are restricted to a mounting that enables you to change the belts quickly, without special tools.

What does the belt drive? A compression strut, floating in spherical self-aligning bearings, between two shafts, can counter the belt tension, while making it possible to change the belt quickly.

Specify the power to be transmitted.
Specify the RPM of the output shaft.
Compute the torque in the shaft.
Specify the pulley diameter and the tension in the belt.

The minimum possible shaft diameter to consider must satisfy that torque requirement.
Now analyse the bending due to belt tension with one or two support pulleys.
 
  • Like
Likes Lnewqban and berkeman
How did you find PF?: Via Google search Hi, I have a vessel I 3D printed to investigate single bubble rise. The vessel has a 4 mm gap separated by acrylic panels. This is essentially my viewing chamber where I can record the bubble motion. The vessel is open to atmosphere. The bubble generation mechanism is composed of a syringe pump and glass capillary tube (Internal Diameter of 0.45 mm). I connect a 1/4” air line hose from the syringe to the capillary The bubble is formed at the tip...
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
I'd like to create a thread with links to 3-D Printer resources, including printers and software package suggestions. My motivations are selfish, as I have a 3-D printed project that I'm working on, and I'd like to buy a simple printer and use low cost software to make the first prototype. There are some previous threads about 3-D printing like this: https://www.physicsforums.com/threads/are-3d-printers-easy-to-use-yet.917489/ but none that address the overall topic (unless I've missed...
Back
Top