Gearbox design-Is this design possible to make the output shaft thin?

Click For Summary
The discussion focuses on the feasibility of designing a gearbox with a thin output shaft, emphasizing that there is no single correct design. Proper alignment and positioning of bearings are crucial to handle forces without increasing stress on the shaft. The design must accommodate quick belt changes, potentially using a compression strut and self-aligning bearings to manage belt tension. Key specifications such as power transmission, output shaft RPM, torque, pulley diameter, and belt tension are essential for determining the minimum shaft diameter. Careful alignment is necessary to ensure the longevity of the coupling and overall system performance.
a61098417
Messages
1
Reaction score
0
TL;DR
The output shaft of the gearbox undergoes torque and bending force(tensile force of the belt)(I use belt after gearbox). If I mount/fix the pulley on other things instead of the output shaft, the belt won't bend the shaft. Thus, the output shaft gets torque only. Is my design correct?
Is this design correct?
 
Engineering news on Phys.org
Welcome to PhysicsForums. Can you post a drawing or picture of your arrangement, and comment on what kind of bearings you are using at each joint? You can use the "Attach files" link below the Edit window to upload PDF or JPEG files.
 
  • Like
Likes Lnewqban and Dr.D
a61098417 said:
Is this design correct?
There are many solutions. There is no one correct design.

Where an additional bearing is provided, it must be positioned and aligned correctly, or it will not carry the required forces without increasing stresses in the shaft. Will you have a flexible coupling between the gearbox and the pulley shaft?

The problem with supporting the output shaft on both sides of the belt pulley is that you are restricted to a mounting that enables you to change the belts quickly, without special tools.

What does the belt drive? A compression strut, floating in spherical self-aligning bearings, between two shafts, can counter the belt tension, while making it possible to change the belt quickly.

Specify the power to be transmitted.
Specify the RPM of the output shaft.
Compute the torque in the shaft.
Specify the pulley diameter and the tension in the belt.

The minimum possible shaft diameter to consider must satisfy that torque requirement.
Now analyse the bending due to belt tension with one or two support pulleys.
 
  • Like
Likes Lnewqban and berkeman
Thread 'Local pressures in turbocharger housing?'
This is question for fluid mechanics. Static pressure in the exhaust manifold(turbo car engine) is usually 1.2 to 2.5 times higher than the boost pressure(intake manifold pressure).Boost pressure is around 1bar guage pressure(2bar absolute). Can the local static pressure somewhere inside a turbine housing ever be lower than atmospheric pressure, is this possible? here some links where CFD is used...

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
2
Views
1K
  • · Replies 24 ·
Replies
24
Views
2K
Replies
2
Views
3K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K