In Boas on p.595 there's an FCV proof for finding the order of a pole.(adsbygoogle = window.adsbygoogle || []).push({});

It says to write f(z) as g(z)/[(z-zo)^n] and then write g(z) as a0 + a1(z-z0) .... etc. and that we can deduce that the Laurent series for f(z) begins with (z-z0)^(-n) unless a0 = 0 i.e g(z0) = 0. Therefore the order of the pole is n. However, how can we be sure that g(z) does not contain terms of the form (z-z0)^(-n) ? Is this just by assumption?

thanks for your help.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: General method of determining order of poles

**Physics Forums | Science Articles, Homework Help, Discussion**