I General relativity question: Gravity clock

logicalmorality
Messages
1
Reaction score
0
TL;DR Summary
Would a gravity powered clock increase or decrease speed? For example an hourglass.
Would a gravity powered clock increase or decrease speed? Take an hourglass. It should increase speed as gravity increases because it's powered by gravity... But it should also decrease speed because of general relativity...
 
Physics news on Phys.org
What you call a ”gravity powered clock” is not a clock in the sense of relativity. It presumes a particular gravitational field to convert a measurement into a corresponding time.
 
There can be competing effects. In fact, you can easily stop an hour glass from working at all by letting it be in free fall.

Assuming you mean "an hour glass at fixed altitude", it's rate decreases compared to an atomic clock colocated with it as you increase in altitude. This is because an hourglass (or pendulum clock) must be recalibrated for the local gravitational field strength.

Independent of that, all clocks in a gravitational field run slightly slow compared to clocks at infinity. So once you've recalibrated your hourglass to match a co-located atomic clock, it'll still be running slightly slow compared to a clock at infinity.

Essentially, the problem is, as Orodruin just said, that such "gravity powered" clocks are not reliable clocks if they are moved to different gravitational field strengths.
 
  • Like
Likes Dale and PeroK
logicalmorality said:
Take an hourglass. It should increase speed as gravity increases because it's powered by gravity... But it should also decrease speed because of general relativity...
Your reasoning here is faulty. You can't do physics by waving your hands and stringing words together. You need to use the math of the theory to make predictions and then compare those predictions with what is actually observed. As long as there is a consistent mathematical model of the scenario that makes predictions that match what we observe, it doesn't matter that that model does not match whatever vague intuitive sense you have of what "looks right".

Also, you are making a simple and common but fundamental error: "gravity" in GR is not just one thing. An hourglass with greater "gravity" in the sense of "acceleration due to gravity" will run out faster, as seen by an observer right next to it, if we just take that one effect into account. But "gravity" in the sense of gravitational time dilation is different from "acceleration due to gravity", and deals with what the hourglass's behavior looks like to an observer who is not right next to it. There is nothing that requires what those two different observers observe to be the same.

Further, you cannot make a blanket statement that greater "acceleration due to gravity" always corresponds to greater gravitational time dilation. That is false as a general statement.
 
  • Like
Likes Ibix and PeroK
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...

Similar threads

Replies
23
Views
1K
Replies
7
Views
2K
Replies
10
Views
236
Replies
23
Views
2K
Back
Top