MHB Show Metric Proves All Points Inside Circle Have Same Center

  • Thread starter Thread starter Julio1
  • Start date Start date
  • Tags Tags
    Geometric
AI Thread Summary
The discussion centers on proving that all points within a circle share the same center, using the metric $d_p(n+m)=|n-m|_p$. Participants clarify that the correct notation for the metric should be $d_p(m,n)=|n-m|_p$, which refers to the $p$-adic metric on the rational numbers. There is a request for a definition of a circle's center and clarification on the variable $p$. A link to a relevant resource is provided for further exploration of the topic. The conversation emphasizes the importance of precise definitions and notation in mathematical discussions.
Julio1
Messages
66
Reaction score
0
Show that all point inside of an circle is his center. Consider the metric $d_p(n+m)=|n-m|_p.$

Hello MHB :). Any hint for the problem?, thanks!.
 
Mathematics news on Phys.org
Hi, Julio.

Julio said:
Show that all point inside of an circle is his center. Consider the metric $d_p(n+m)=|n-m|_p.$
Could you give the definition of a circle center? Also, a metric is a function of two arguments, while $d_p(n+m)$ has one argument. Finally, what is $p$?
 
Julio said:
Show that all point inside of an circle is his center. Consider the metric $d_p(n+m)=|n-m|_p.$
I suppose you mean $d_p(m,n)=|n-m|_p$ where $d_p$ is the $p$-adic metric on $\mathbb{Q},$ and disc instead of circle. If so, have a look https://www.colby.edu/math/faculty/Faculty_files/hollydir/Holly01.pdf.
 
Last edited:
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top