MHB Give a basis to get the specific matrix M

Click For Summary
The discussion centers on finding specific bases for linear maps that yield upper triangular and diagonal matrices. For the three given linear maps, participants derive bases that satisfy the conditions for both matrix forms. The conversation also touches on the definition of the transformation matrix with respect to different bases, emphasizing the relationship between the transformation and its matrix representation. Clarifications are sought regarding the notation and definitions of transformation matrices, particularly in relation to the identity transformation. Overall, the thread highlights the complexities of linear transformations and matrix representations in different bases.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :giggle:

We have the following linear maps \begin{align*}\phi_1:\mathbb{R}^2\rightarrow \mathbb{R}, \ \begin{pmatrix}x\\ y\end{pmatrix} \mapsto \begin{pmatrix}x+y\\ x-y\end{pmatrix} \\ \phi_2:\mathbb{R}^2\rightarrow \mathbb{R}, \ \begin{pmatrix}x\\ y\end{pmatrix} \mapsto \begin{pmatrix}-y\\ x\end{pmatrix} \\ \phi_3:\mathbb{R}^2\rightarrow \mathbb{R}, \ \begin{pmatrix}x\\ y\end{pmatrix} \mapsto \begin{pmatrix}y\\ 0\end{pmatrix} \end{align*}

1. Give (if possible) for each $i\in \{1,2,3\}$ a Basis $B_i$ of $\mathbb{R}^2$ such that $M_{B_i}(\phi_i)$ an upper triangular matrix.
2. Give (if possible) for each $i\in \{1,2,3\}$ a Basis $B_i$ of $\mathbb{R}^2$ such that $M_{B_i}(\phi_i)$ an diagonal matrix.

I have done the following:

Let $\mathcal{B}_i=\{b_1, b_2\}$, with $b_1=\begin{pmatrix}x_1\\ y_1 \end{pmatrix}$ and $b_2=\begin{pmatrix}x_2\\ y_2 \end{pmatrix}$.

For question 1 :

- It holds that \begin{equation*}\mathcal{M}_{\mathcal{B}_1}(\phi_1)=\left (\phi_1(b_1)\mid \phi_1(b_2)\right )=\left (\phi_1\begin{pmatrix}x_1\\ y_1 \end{pmatrix}\mid \phi_1\begin{pmatrix}x_2\\ y_2 \end{pmatrix}\right )=\begin{pmatrix}x_1+y_1 & x_2+y_2 \\ x_1-y_1 & x_2-y_2\end{pmatrix}\end{equation*}
So that it is an upper triangular matrix, it must be $x_1-y_1=0$. Then we have that $x_1=y_1$.
Then we have for example such a basis $\mathcal{B}_1=\{b_1, b_2\}$, with $b_1=\begin{pmatrix}1\\ 1 \end{pmatrix}$ and $b_2=\begin{pmatrix}1\\ 0 \end{pmatrix}$.
These vectors are linearly independent and the matrix \begin{equation*}\mathcal{M}_{\mathcal{B}_1}(\phi_1)=\begin{pmatrix}2 & 1 \\ 0 & 1\end{pmatrix}\end{equation*} is an upper triangular matrix. - It holds that \begin{equation*}\mathcal{M}_{\mathcal{B}_2}(\phi_2)=\left (\phi_2(b_1)\mid \phi_2(b_2)\right )=\left (\phi_2\begin{pmatrix}x_1\\ y_1 \end{pmatrix}\mid \phi_2\begin{pmatrix}x_2\\ y_2 \end{pmatrix}\right )=\begin{pmatrix}-y_1 & -y_2 \\ x_1 & x_2\end{pmatrix}\end{equation*}
So that it is an upper triangular matrix, it must be $x_1=0$. Then we have for example such a basis $\mathcal{B}_2=\{b_1, b_2\}$, with $b_1=\begin{pmatrix}0\\ 1 \end{pmatrix}$ and $b_2=\begin{pmatrix}1\\ 1 \end{pmatrix}$.
These vectors are linearly independent and the matrix \begin{equation*}\mathcal{M}_{\mathcal{B}_2}(\phi_2)=\begin{pmatrix}-1 & 1 \\ 0 & 1\end{pmatrix}\end{equation*} is an upper triangular matrix. - It holds that \begin{equation*}\mathcal{M}_{\mathcal{B}_3}(\phi_3)=\left (\phi_3(b_1)\mid \phi_3(b_2)\right )=\left (\phi_3\begin{pmatrix}x_1\\ y_1 \end{pmatrix}\mid \phi_3\begin{pmatrix}x_2\\ y_2 \end{pmatrix}\right )=\begin{pmatrix}y_1 & y_2 \\ 0 & 0\end{pmatrix}\end{equation*}
This is already an upper triangular matrix, so we can take an arbitrary basis, e.g. $\mathcal{B}_3=\{b_1, b_2\}$, with $b_1=\begin{pmatrix}0\\ 1 \end{pmatrix}$ and $b_2=\begin{pmatrix}1\\ 1 \end{pmatrix}$.
These vectors are linearly independent and the matrix \begin{equation*}\mathcal{M}_{\mathcal{B}_3}(\phi_3)=\begin{pmatrix}-1 & 1 \\ 0 & 1\end{pmatrix}\end{equation*} is an upper triangular matrix.
For question 2 :

- It holds that \begin{equation*}\mathcal{M}_{\mathcal{B}_1}(\phi_1)=\left (\phi_1(b_1)\mid \phi_1(b_2)\right )=\left (\phi_1\begin{pmatrix}x_1\\ y_1 \end{pmatrix}\mid \phi_1\begin{pmatrix}x_2\\ y_2 \end{pmatrix}\right )=\begin{pmatrix}x_1+y_1 & x_2+y_2 \\ x_1-y_1 & x_2-y_2\end{pmatrix}\end{equation*}
So that it is a diagonal matrix, it must be $x_1-y_1=x_2+y_2=0$, then $x_1=y_1$ and $x_2=-y_2$. Then we have for example such a basis $\mathcal{B}_1=\{b_1, b_2\}$, with $b_1=\begin{pmatrix}1\\ 1 \end{pmatrix}$ and $b_2=\begin{pmatrix}1\\ -1 \end{pmatrix}$.
These vectors are linearly independent and the matrix \begin{equation*}\mathcal{M}_{\mathcal{B}_1}(\phi_1)=\begin{pmatrix}2 & 0 \\ 0 & 2\end{pmatrix}\end{equation*} is a diagonal matrix. - It holds that \begin{equation*}\mathcal{M}_{\mathcal{B}_2}(\phi_2)=\left (\phi_2(b_1)\mid \phi_2(b_2)\right )=\left (\phi_2\begin{pmatrix}x_1\\ y_1 \end{pmatrix}\mid \phi_2\begin{pmatrix}x_2\\ y_2 \end{pmatrix}\right )=\begin{pmatrix}-y_1 & -y_2 \\ x_1 & x_2\end{pmatrix}\end{equation*}
So that it is a diagonal matrix, it must be $x_1=y_2=0$. Then we have for example such a basis $\mathcal{B}_2=\{b_1, b_2\}$, with $b_1=\begin{pmatrix}0\\ 1 \end{pmatrix}$ and $b_2=\begin{pmatrix}1\\ 0 \end{pmatrix}$.
These vectors are linearly independent and the matrix \begin{equation*}\mathcal{M}_{\mathcal{B}_2}(\phi_2)=\begin{pmatrix}-1 & 0 \\ 0 & 1\end{pmatrix}\end{equation*} is a diagonal matrix. It holds that \begin{equation*}\mathcal{M}_{\mathcal{B}_3}(\phi_3)=\left (\phi_3(b_1)\mid \phi_3(b_2)\right )=\left (\phi_3\begin{pmatrix}x_1\\ y_1 \end{pmatrix}\mid \phi_3\begin{pmatrix}x_2\\ y_2 \end{pmatrix}\right )=\begin{pmatrix}y_1 & y_2 \\ 0 & 0\end{pmatrix}\end{equation*}
So that it is a diagonal matrix, it must be $y_2=0$. Then we have for example such a basis $\mathcal{B}_3=\{b_1, b_2\}$, with $b_1=\begin{pmatrix}0\\ 1 \end{pmatrix}$ and $b_2=\begin{pmatrix}1\\ 0 \end{pmatrix}$.
These vectors are linearly independent and the matrix \begin{equation*}\mathcal{M}_{\mathcal{B}_3}(\phi_3)=\begin{pmatrix}1 & 0 \\ 0 & 0\end{pmatrix}\end{equation*} is a diagonal matrix. Is everything correct? :unsure:
 
Physics news on Phys.org
Hi mathmari!

What is $M_B(\phi)$? 🤔

I would expect it to be the matrix of the transformation $\phi$ with respect to the basis $B$.
But if so, then we would have $M_B(\phi) = (b_1\mid b_2)^{-1} (\phi(b_1)\mid \phi(b_2))$. :oops:

Consider for instance the identity transformation $\text{id}$.
With respect to a basis $B$ it should be $M_B(\text{id})=\begin{pmatrix}1&0\\0&1\end{pmatrix}$ shouldn't it? And not $(b_1\mid b_2)$? :unsure:
 
Klaas van Aarsen said:
What is $M_B(\phi)$? 🤔

I would expect it to be the matrix of the transformation $\phi$ with respect to the basis $B$.
But if so, then we would have $M_B(\phi) = (b_1\mid b_2)^{-1} (\phi(b_1)\mid \phi(b_2))$. :oops:

Consider for instance the identity transformation $\text{id}$.
With respect to a basis $B$ it should be $M_B(\text{id})=\begin{pmatrix}1&0\\0&1\end{pmatrix}$ shouldn't it? And not $(b_1\mid b_2)$? :unsure:

Ahh ok!

Yes, it is the matrix of the transformation.

So, what do we have to do? :unsure:
 
We can find a diagonal $M_B(\phi)$ by calculating the eigenvalues and corresponding eigenvectors.
If $\phi$ is diagonalizable, then the eigenvectors form a basis that satisfies the condition.
In that case we have also found an upper triangle matrix, since a diagonal matrix is upper triangular. 🤔
 
In general how is $M_B^B(\phi_a)$ for a matrix $a$, or $M_B^E(\text{id})$ or $M_E^B(\text{id})$ defined? For example let $$b_1=\begin{pmatrix}1 \\ 1\\ 1\end{pmatrix}, b_2=\begin{pmatrix}1 \\ 0\\ -1\end{pmatrix}, b_3=\begin{pmatrix}-1 \\ 1\\ 0\end{pmatrix}$$

Then is the following correct?
\begin{equation*}\mathcal{M}_{\mathcal{E}}^{\mathcal{B}}(\text{id})=\left (\gamma_{\mathcal{E}}(b_1)\mid \gamma_{\mathcal{E}}(b_2)\mid \gamma_{\mathcal{E}}(b_3)\right )=\left (b_1\mid b_2\mid b_3\right )=\begin{pmatrix}1 & 1 & -1 \\ 1 & 0 & 1 \\ 1 & -1 & 0\end{pmatrix}\end{equation*}

\begin{equation*}\mathcal{M}_{\mathcal{B}}^{\mathcal{E}}(\text{id})=\left (\gamma_{\mathcal{B}}(e_1)\mid \gamma_{\mathcal{B}}(e_2)\mid \gamma_{\mathcal{B}}(e_3)\right )\end{equation*}
For each $e_i$ we apply Gauss algorithm:

\begin{align*}\begin{pmatrix} \left.\begin{matrix}
\begin{matrix}1 & 1 & -1 \\ 1 & 0 & 1 \\ 1 & -1 & 0\end{matrix}
\end{matrix}\right|\begin{matrix}1 \\ 0 \\ 0 \end{matrix}\end{pmatrix} \ & \overset{Z_2:Z_2-Z_1}{\longrightarrow } \ \begin{pmatrix}\left.\begin{matrix}
\begin{matrix}1 & 1 & -1 \\ 0 & -1 & 2 \\ 1 & -1 & 0\end{matrix}
\end{matrix}\right|\begin{matrix}1 \\ -1 \\ 0 \end{matrix}\end{pmatrix} \ \overset{Z_3:Z_3-Z_1}{\longrightarrow } \ \begin{pmatrix}\left.\begin{matrix}
\begin{matrix}1 & 1 & -1 \\ 0 & -1 & 2 \\ 0 & -2 & 1\end{matrix}
\end{matrix}\right|\begin{matrix}1 \\ -1 \\ -1 \end{matrix}\end{pmatrix} \ \\ & \overset{Z_3:Z_3-2\cdot Z_2}{\longrightarrow } \ \begin{pmatrix}\left.\begin{matrix}
\begin{matrix}1 & 1 & -1 \\ 0 & -1 & 2 \\ 0 & 0 & -3\end{matrix}
\end{matrix}\right|\begin{matrix}1 \\ -1 \\ 1 \end{matrix}\end{pmatrix} \end{align*}
So we get \begin{equation*}\gamma_B(e_1)=\begin{pmatrix}-\frac{1}{3}\\ \frac{5}{3} \\ \frac{1}{3}\end{pmatrix}\end{equation*} \begin{align*}\begin{pmatrix} \left.\begin{matrix}
\begin{matrix}1 & 1 & -1 \\ 1 & 0 & 1 \\ 1 & -1 & 0\end{matrix}
\end{matrix}\right|\begin{matrix}0 \\ 1 \\ 0 \end{matrix}\end{pmatrix} \ & \overset{Z_2:Z_2-Z_1}{\longrightarrow } \ \begin{pmatrix}\left.\begin{matrix}
\begin{matrix}1 & 1 & -1 \\ 0 & -1 & 2 \\ 1 & -1 & 0\end{matrix}
\end{matrix}\right|\begin{matrix}0 \\ 1 \\ 0 \end{matrix}\end{pmatrix} \ \overset{Z_3:Z_3-Z_1}{\longrightarrow } \ \begin{pmatrix}\left.\begin{matrix}
\begin{matrix}1 & 1 & -1 \\ 0 & -1 & 2 \\ 0 & -2 & 1\end{matrix}
\end{matrix}\right|\begin{matrix}0 \\ 1 \\ 0 \end{matrix}\end{pmatrix} \ \\ & \overset{Z_3:Z_3-2\cdot Z_2}{\longrightarrow } \ \begin{pmatrix}\left.\begin{matrix}
\begin{matrix}1 & 1 & -1 \\ 0 & -1 & 2 \\ 0 & 0 & -3\end{matrix}
\end{matrix}\right|\begin{matrix}0 \\ 1 \\ -2 \end{matrix}\end{pmatrix} \end{align*}
So we get \begin{equation*}\gamma_B(e_2)=\begin{pmatrix}\frac{4}{3}\\ \frac{1}{3} \\ \frac{2}{3}\end{pmatrix}\end{equation*} \begin{align*}\begin{pmatrix} \left.\begin{matrix}
\begin{matrix}1 & 1 & -1 \\ 1 & 0 & 1 \\ 1 & -1 & 0\end{matrix}
\end{matrix}\right|\begin{matrix}0 \\ 0 \\ 1 \end{matrix}\end{pmatrix} \ & \overset{Z_2:Z_2-Z_1}{\longrightarrow } \ \begin{pmatrix}\left.\begin{matrix}
\begin{matrix}1 & 1 & -1 \\ 0 & -1 & 2 \\ 1 & -1 & 0\end{matrix}
\end{matrix}\right|\begin{matrix}0 \\ 0 \\ 1 \end{matrix}\end{pmatrix} \ \overset{Z_3:Z_3-Z_1}{\longrightarrow } \ \begin{pmatrix}\left.\begin{matrix}
\begin{matrix}1 & 1 & -1 \\ 0 & -1 & 2 \\ 0 & -2 & 1\end{matrix}
\end{matrix}\right|\begin{matrix}0 \\ 0 \\ 1 \end{matrix}\end{pmatrix} \ \\ & \overset{Z_3:Z_3-2\cdot Z_2}{\longrightarrow } \ \begin{pmatrix}\left.\begin{matrix}
\begin{matrix}1 & 1 & -1 \\ 0 & -1 & 2 \\ 0 & 0 & -3\end{matrix}
\end{matrix}\right|\begin{matrix}0 \\ 0 \\ 1 \end{matrix}\end{pmatrix} \end{align*}
So we get \begin{equation*}\gamma_B(e_3)=\begin{pmatrix}-1\\ \frac{2}{3} \\ -\frac{1}{3}\end{pmatrix}\end{equation*} That means that \begin{equation*}\mathcal{M}_{\mathcal{B}}^{\mathcal{E}}(\phi_a)=\begin{pmatrix}-\frac{1}{3} & \frac{4}{3} & -1 \\ \frac{5}{3} & \frac{1}{3} & \frac{2}{3} \\ \frac{1}{3} & \frac{2}{3} & -\frac{1}{3}\end{pmatrix}\end{equation*}
And : \begin{equation*}\mathcal{M}_{\mathcal{B}}^{\mathcal{B}}(\text{id})=\left (\phi_a(b_1)\mid \phi_a(b_2)\mid \phi_a(b_3)\right )=a=\begin{pmatrix}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{pmatrix}\end{equation*} :unsure:
 
mathmari said:
In general how is $M_B^B(\phi_a)$ for a matrix $a$, or $M_B^E(\text{id})$ or $M_E^B(\text{id})$ defined?

I usually get confused with the upper and lower indices, and I think some texts swap their meaning. o_O
Anyway, let me give one definition, which matches what you write afterwards.

$M_E^B(\phi)$ is the matrix such that when we multiply it with a vector with respect to the basis $B$, the result is the vector with respect to the basis $E$ mapped according to the transformation $\phi$.

So suppose that $\gamma_E(b_1)$ is the vector with respect to $E$ of the first basis vector $b_1$ of $B$.
Then $M_E^B(\phi)\begin{pmatrix}1\\0\end{pmatrix}=\gamma_E(\phi(b_1))$. 🤔

If $\phi$ is the identity $\text{id}$, we get $M_E^B(\text{id})\begin{pmatrix}1\\0\end{pmatrix}=\gamma_E(\text{id}(b_1))=\gamma_E(b_1)$.
mathmari said:
And : \begin{equation*}\mathcal{M}_{\mathcal{B}}^{\mathcal{B}}(\text{id})=\left (\phi_a(b_1)\mid \phi_a(b_2)\mid \phi_a(b_3)\right )=a=\begin{pmatrix}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{pmatrix}\end{equation*}
I think something went wrong, because the result should be the identity matrix. :oops:

Also, it seems that $\phi_a$ and $\text{id}$ have been mixed up in a number of places. o_O
 
Klaas van Aarsen said:
I usually get confused with the upper and lower indices, and I think some texts swap their meaning. o_O
Anyway, let me give one definition, which matches what you write afterwards.

$M_E^B(\phi)$ is the matrix such that when we multiply it with a vector with respect to the basis $B$, the result is the vector with respect to the basis $E$ mapped according to the transformation $\phi$.

So suppose that $\gamma_E(b_1)$ is the vector with respect to $E$ of the first basis vector $b_1$ of $B$.
Then $M_E^B(\phi)\begin{pmatrix}1\\0\end{pmatrix}=\gamma_E(\phi(b_1))$. 🤔

If $\phi$ is the identity $\text{id}$, we get $M_E^B(\text{id})\begin{pmatrix}1\\0\end{pmatrix}=\gamma_E(\text{id}(b_1))=\gamma_E(b_1)$.

So, what I have done in my previous post is not correct, is it? :unsure:
Klaas van Aarsen said:
I think something went wrong, because the result should be the identity matrix. :oops:

Also, it seems that $\phi_a$ and $\text{id}$ have been mixed up in a number of places. o_O

Ahh... The matrix $a$ is $
\begin{pmatrix}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{pmatrix}$ and I thought that the result is equal to teh matrix $a$, since $\phi_a(b_i)$ is the $i$-th column of $a$ ? Or isn't $M_B^B(\text{id})$ defined like that? :unsure:
 
mathmari said:
So, what I have done in my previous post is not correct, is it?

Ahh... The matrix $a$ is $
\begin{pmatrix}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{pmatrix}$ and I thought that the result is equal to teh matrix $a$, since $\phi_a(b_i)$ is the $i$-th column of $a$ ? Or isn't $M_B^B(\text{id})$ defined like that?
Now that you mention what $a$ is, it makes a bit more sense.

Either way, $M_B^B(\text{id})$ makes no reference to $a$ nor $\phi_a$ does it? So it can not be equal to anything that does refer to $\phi_a$. :oops:
mathmari said:
For each $e_i$ we apply Gauss algorithm:

\begin{align*}\begin{pmatrix} \left.\begin{matrix}
\begin{matrix}1 & 1 & -1 \\ 1 & 0 & 1 \\ 1 & -1 & 0\end{matrix}
\end{matrix}\right|\begin{matrix}1 \\ 0 \\ 0 \end{matrix}\end{pmatrix} \ & \overset{Z_2:Z_2-Z_1}{\longrightarrow } \ \begin{pmatrix}\left.\begin{matrix}
\begin{matrix}1 & 1 & -1 \\ 0 & -1 & 2 \\ 1 & -1 & 0\end{matrix}
\end{matrix}\right|\begin{matrix}1 \\ -1 \\ 0 \end{matrix}\end{pmatrix} \ \overset{Z_3:Z_3-Z_1}{\longrightarrow } \ \begin{pmatrix}\left.\begin{matrix}
\begin{matrix}1 & 1 & -1 \\ 0 & -1 & 2 \\ 0 & -2 & 1\end{matrix}
\end{matrix}\right|\begin{matrix}1 \\ -1 \\ -1 \end{matrix}\end{pmatrix} \ \\ & \overset{Z_3:Z_3-2\cdot Z_2}{\longrightarrow } \ \begin{pmatrix}\left.\begin{matrix}
\begin{matrix}1 & 1 & -1 \\ 0 & -1 & 2 \\ 0 & 0 & -3\end{matrix}
\end{matrix}\right|\begin{matrix}1 \\ -1 \\ 1 \end{matrix}\end{pmatrix} \end{align*}
So we get \begin{equation*}\gamma_B(e_1)=\begin{pmatrix}-\frac{1}{3}\\ \frac{5}{3} \\ \frac{1}{3}\end{pmatrix}\end{equation*}\begin{align*}\begin{pmatrix} \left.\begin{matrix}
\begin{matrix}1 & 1 & -1 \\ 1 & 0 & 1 \\ 1 & -1 & 0\end{matrix}
\end{matrix}\right|\begin{matrix}0 \\ 1 \\ 0 \end{matrix}\end{pmatrix} \ & \overset{Z_2:Z_2-Z_1}{\longrightarrow } \ \begin{pmatrix}\left.\begin{matrix}
\begin{matrix}1 & 1 & -1 \\ 0 & -1 & 2 \\ 1 & -1 & 0\end{matrix}
\end{matrix}\right|\begin{matrix}0 \\ 1 \\ 0 \end{matrix}\end{pmatrix} \ \overset{Z_3:Z_3-Z_1}{\longrightarrow } \ \begin{pmatrix}\left.\begin{matrix}
\begin{matrix}1 & 1 & -1 \\ 0 & -1 & 2 \\ 0 & -2 & 1\end{matrix}
\end{matrix}\right|\begin{matrix}0 \\ 1 \\ 0 \end{matrix}\end{pmatrix} \ \\ & \overset{Z_3:Z_3-2\cdot Z_2}{\longrightarrow } \ \begin{pmatrix}\left.\begin{matrix}
\begin{matrix}1 & 1 & -1 \\ 0 & -1 & 2 \\ 0 & 0 & -3\end{matrix}
\end{matrix}\right|\begin{matrix}0 \\ 1 \\ -2 \end{matrix}\end{pmatrix} \end{align*}
So we get \begin{equation*}\gamma_B(e_2)=\begin{pmatrix}\frac{4}{3}\\ \frac{1}{3} \\ \frac{2}{3}\end{pmatrix}\end{equation*}\begin{align*}\begin{pmatrix} \left.\begin{matrix}
\begin{matrix}1 & 1 & -1 \\ 1 & 0 & 1 \\ 1 & -1 & 0\end{matrix}
\end{matrix}\right|\begin{matrix}0 \\ 0 \\ 1 \end{matrix}\end{pmatrix} \ & \overset{Z_2:Z_2-Z_1}{\longrightarrow } \ \begin{pmatrix}\left.\begin{matrix}
\begin{matrix}1 & 1 & -1 \\ 0 & -1 & 2 \\ 1 & -1 & 0\end{matrix}
\end{matrix}\right|\begin{matrix}0 \\ 0 \\ 1 \end{matrix}\end{pmatrix} \ \overset{Z_3:Z_3-Z_1}{\longrightarrow } \ \begin{pmatrix}\left.\begin{matrix}
\begin{matrix}1 & 1 & -1 \\ 0 & -1 & 2 \\ 0 & -2 & 1\end{matrix}
\end{matrix}\right|\begin{matrix}0 \\ 0 \\ 1 \end{matrix}\end{pmatrix} \ \\ & \overset{Z_3:Z_3-2\cdot Z_2}{\longrightarrow } \ \begin{pmatrix}\left.\begin{matrix}
\begin{matrix}1 & 1 & -1 \\ 0 & -1 & 2 \\ 0 & 0 & -3\end{matrix}
\end{matrix}\right|\begin{matrix}0 \\ 0 \\ 1 \end{matrix}\end{pmatrix} \end{align*}
So we get \begin{equation*}\gamma_B(e_3)=\begin{pmatrix}-1\\ \frac{2}{3} \\ -\frac{1}{3}\end{pmatrix}\end{equation*}
For the record, we can do the Gaussian elimination in one go.
That is, we can apply Gauss to $\begin{pmatrix}B\mid I\end{pmatrix}$ instead of $\begin{pmatrix}B\mid e_i\end{pmatrix}$ for each $i$ separately. 🤔

mathmari said:
That means that \begin{equation*}\mathcal{M}_{\mathcal{B}}^{\mathcal{E}}(\phi_a)=\begin{pmatrix}-\frac{1}{3} & \frac{4}{3} & -1 \\ \frac{5}{3} & \frac{1}{3} & \frac{2}{3} \\ \frac{1}{3} & \frac{2}{3} & -\frac{1}{3}\end{pmatrix}\end{equation*}

Shouldn't it be $\mathcal{M}_{\mathcal{B}}^{\mathcal{E}}(\text{id})$ instead? :unsure:
mathmari said:
And : \begin{equation*}\mathcal{M}_{\mathcal{B}}^{\mathcal{B}}(\text{id})=\left (\phi_a(b_1)\mid \phi_a(b_2)\mid \phi_a(b_3)\right )=a=\begin{pmatrix}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{pmatrix}\end{equation*}

This looks wrong. (Shake)
I believe we have $\mathcal{M}_{\mathcal{B}}^{\mathcal{B}}(\text{id})\ne\left (\phi_a(b_1)\mid \phi_a(b_2)\mid \phi_a(b_3)\right )$ and $\left (\phi_a(b_1)\mid \phi_a(b_2)\mid \phi_a(b_3)\right )\ne a$.
 
Klaas van Aarsen said:
Now that you mention what $a$ is, it makes a bit more sense.

Either way, $M_B^B(\text{id})$ makes no reference to $a$ nor $\phi_a$ does it? So it can not be equal to anything that does refer to $\phi_a$. :oops:

Oh there is a typo... There it should be $\mathcal{M}_{\mathcal{B}}^{\mathcal{B}}(\phi_a)$ (Tmi)
 
  • #10
So to clarify :

We have $B=\{b_1, b_2, b_3\}$ with $$b_1=\begin{pmatrix}1 \\ 1\\ 1\end{pmatrix}, b_2=\begin{pmatrix}1 \\ 0\\ -1\end{pmatrix}, b_3=\begin{pmatrix}-1 \\ 1\\ 0\end{pmatrix}$$ which is basis of $\mathbb{R}^3$.

Then to calculate $M_E^B(\text{id})$ and $M_B^E(\text{id})$ we do the following?
\begin{equation*}\mathcal{M}_{\mathcal{E}}^{\mathcal{B}}(\text{id})=\left (\gamma_{\mathcal{E}}(b_1)\mid \gamma_{\mathcal{E}}(b_2)\mid \gamma_{\mathcal{E}}(b_3)\right )=\left (b_1\mid b_2\mid b_3\right )=\begin{pmatrix}1 & 1 & -1 \\ 1 & 0 & 1 \\ 1 & -1 & 0\end{pmatrix}\end{equation*}
\begin{equation*}\mathcal{M}_{\mathcal{B}}^{\mathcal{E}}(\text{id})=\left (\gamma_{\mathcal{B}}(e_1)\mid \gamma_{\mathcal{B}}(e_2)\mid \gamma_{\mathcal{B}}(e_3)\right )\end{equation*} Then suppose $a=\begin{pmatrix}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{pmatrix}$ then to calculate $M_B^B(\phi_a)$ do we do the following?
\begin{equation*}\mathcal{M}_{\mathcal{B}}^{\mathcal{B}}(\phi_a)=\left (\phi_a(b_1)\mid \phi_a(b_2)\mid \phi_a(b_3)\right )=a=\begin{pmatrix}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{pmatrix}\end{equation*} :unsure:
 
  • #11
mathmari said:
So to clarify :

We have $B=\{b_1, b_2, b_3\}$ with $$b_1=\begin{pmatrix}1 \\ 1\\ 1\end{pmatrix}, b_2=\begin{pmatrix}1 \\ 0\\ -1\end{pmatrix}, b_3=\begin{pmatrix}-1 \\ 1\\ 0\end{pmatrix}$$ which is basis of $\mathbb{R}^3$.

Then to calculate $M_E^B(\text{id})$ and $M_B^E(\text{id})$ we do the following?
\begin{equation*}\mathcal{M}_{\mathcal{E}}^{\mathcal{B}}(\text{id})=\left (\gamma_{\mathcal{E}}(b_1)\mid \gamma_{\mathcal{E}}(b_2)\mid \gamma_{\mathcal{E}}(b_3)\right )=\left (b_1\mid b_2\mid b_3\right )=\begin{pmatrix}1 & 1 & -1 \\ 1 & 0 & 1 \\ 1 & -1 & 0\end{pmatrix}\end{equation*}
\begin{equation*}\mathcal{M}_{\mathcal{B}}^{\mathcal{E}}(\text{id})=\left (\gamma_{\mathcal{B}}(e_1)\mid \gamma_{\mathcal{B}}(e_2)\mid \gamma_{\mathcal{B}}(e_3)\right )\end{equation*}

What are $\gamma_{\mathcal{E}}$ and $\gamma_{\mathcal{B}}$? 🤔

mathmari said:
Then suppose $a=\begin{pmatrix}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{pmatrix}$ then to calculate $M_B^B(\phi_a)$ do we do the following?
\begin{equation*}\mathcal{M}_{\mathcal{B}}^{\mathcal{B}}(\phi_a)=\left (\phi_a(b_1)\mid \phi_a(b_2)\mid \phi_a(b_3)\right )=a=\begin{pmatrix}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{pmatrix}\end{equation*}

Can it be that we have $\mathcal{M}_{\mathcal{E}}^{\mathcal{E}}(\phi_a)=a$ instead? 🤔
And $\mathcal{M}_{\mathcal{E}}^{\mathcal{E}}(\phi_a)=\left (\gamma_{\mathcal{E}}(\phi_a(e_1))\mid \gamma_{\mathcal{E}}(\phi_a(e_2))\mid \gamma_{\mathcal{E}}(\phi_a(e_3))\right )$? 🤔

Perhaps we can back to this after we clarified what $\gamma_{\mathcal{E}}$ and $\gamma_{\mathcal{B}}$ are. o_O
 
  • #12
$\gamma_B(v)$ is the vector of coefficients when we write the vector $v$ as a linear combination of the elements of the basis $B$.

For example $\gamma_B(e_i)=\begin{pmatrix}c_1\\ c_2 \\ c_3\end{pmatrix}$ with \begin{equation*}e_i=c_1b_1+c_2b_2+c_3b_3=c_1\begin{pmatrix}1 \\ 1 \\ 0\end{pmatrix}+c_2\begin{pmatrix}1 \\ 0 \\ 1\end{pmatrix}+c_3\begin{pmatrix}0 \\ 1 \\ 1\end{pmatrix}\end{equation*}
 
  • #13
mathmari said:
$\gamma_B(v)$ is the vector of coefficients when we write the vector $v$ as a linear combination of the elements of the basis $B$.

For example $\gamma_B(e_i)=\begin{pmatrix}c_1\\ c_2 \\ c_3\end{pmatrix}$ with \begin{equation*}e_i=c_1b_1+c_2b_2+c_3b_3=c_1\begin{pmatrix}1 \\ 1 \\ 0\end{pmatrix}+c_2\begin{pmatrix}1 \\ 0 \\ 1\end{pmatrix}+c_3\begin{pmatrix}0 \\ 1 \\ 1\end{pmatrix}\end{equation*}
Okay! :geek:

Let $V$ be our abstract vector space.
Let $\mathbb{R}^3_E$ be the space of column vectors with respect to basis $E$.
Let $\mathbb{R}^3_B$ be the space of column vectors with respect to basis $B$.
And let's assume that $\phi_a$ is the map $V\to V$ such that it corresponds to matrix multiplication with $a$ with respect to the standard basis $E$.

Then here's a diagram that shows the relevant relationships.

1612043175776.png


In particular we can deduce from it that:
$$M^B_B(\phi_a)=M^E_B(\text{id}) \cdot a \cdot M^E_B(\text{id})^{-1}$$
🤔
 
Last edited:
  • #14
Klaas van Aarsen said:
Okay! :geek:

Let $V$ be our abstract vector space.
Let $\mathbb{R}^3_E$ be the space of column vectors with respect to basis $E$.
Let $\mathbb{R}^3_B$ be the space of column vectors with respect to basis $B$.
And let's assume that $\phi_a$ is the map $V\to V$ such that it corresponds to matrix multiplication with $a$ with respect to the standard basis $E$.

Then here's a diagram that shows the relevant relationships.

View attachment 10951

In particular we can deduce from it that:
$$M^B_B(\phi_a)=M^E_B(\text{id}) \cdot a \cdot M^E_B(\text{id})^{-1}$$
🤔

Ahh ok! And are the matrices $M^E_B(\text{id}) $ and $ M^E_B(\text{id})^{-1}$ that I calculated above correct? :unsure:
 
  • #15
mathmari said:
Ahh ok! And are the matrices $M^E_B(\text{id}) $ and $ M^E_B(\text{id})^{-1}$ that I calculated above correct?
They look correct to me. (Nod)
 
  • #16
Klaas van Aarsen said:
They look correct to me. (Nod)

Great!

As for my initial post... what is then $M_{B_i}$ ? Is it like $M_{B_i}^{B_i}$ ? :unsure:
 
  • #17
mathmari said:
As for my initial post... what is then $M_{B_i}$ ? Is it like $M_{B_i}^{B_i}$ ?
That is what I'd expect yes. 🤔
 
  • #18
Klaas van Aarsen said:
That is what I'd expect yes. 🤔

Ok.. So with $M_B(\phi) = (b_1\mid b_2)^{-1} (\phi(b_1)\mid \phi(b_2))$ we have the following :

Let $b_1=\begin{pmatrix}x_1\\ y_1 \end{pmatrix}$ and $b_2=\begin{pmatrix}x_2\\ y_2 \end{pmatrix}$.

With $\phi_1$ :
\begin{align*}M_B(\phi_1)&=\begin{pmatrix}x_1 & x_2 \\ y_1 & y_2\end{pmatrix}^{-1}\cdot \begin{pmatrix}x_1+y_1 & x_2+y_2 \\ x_1-y_1 & x_2-y_2\end{pmatrix}=\frac{1}{x_1y_2-x_2y_1}\begin{pmatrix}y_2 & -x_2 \\ -y_1 & x_1\end{pmatrix}\cdot \begin{pmatrix}x_1+y_1 & x_2+y_2 \\ x_1-y_1 & x_2-y_2\end{pmatrix} \\ & =\frac{1}{x_1y_2-x_2y_1}\begin{pmatrix}x_1y_2+y_1y_2 -x_1x_2+x_2y_1&x_2y_2+y_2^2-x_2^2+x_2y_2 \\ -x_1y_1-y_1^2+x_1^2-x_1y_1 & -x_2y_1-y_1y_2+x_1x_2-x_1y_2\end{pmatrix} \\ & =\frac{1}{x_1y_2-x_2y_1}\begin{pmatrix}x_1y_2+y_1y_2 -x_1x_2+x_2y_1& 2x_2y_2+y_2^2-x_2^2 \\ -2x_1y_1-y_1^2+x_1^2 & -x_2y_1-y_1y_2+x_1x_2-x_1y_2\end{pmatrix}\end{align*}
Now we have to solve a system such that this matrix is an upper triangular.

Is that way correct? Or is there an other approach? :unsure:
 
  • #19
Yes, that looks correct. (Nod)
However, we do not have to solve the entire system. It suffices if the bottom left matrix entry is $0$.
That is, we only needed to find $-2x_1 y_1 -y_1^2+x_1^2$, and we need to find $x_1$ and $y_1$ such that it is $0$. 🤔

Another approach.
Let $U=(u_{ij})=M_B(\phi)$ be the desired upper triangular matrix.
Let $b_1$ be the first vector in the desired basis.
Then $U\begin{pmatrix}1\\0\end{pmatrix} = \begin{pmatrix}u_{11}\\0\end{pmatrix} = u_{11}\begin{pmatrix}1\\0\end{pmatrix}$.
In other words, $u_{11}$ must be an eigenvalue of $\phi$ and $b_1$ must be the corresponding eigenvector. 🤔
 
  • #20
Klaas van Aarsen said:
Another approach.
Let $U=(u_{ij})=M_B(\phi)$ be the desired upper triangular matrix.
Let $b_1$ be the first vector in the desired basis.
Then $U\begin{pmatrix}1\\0\end{pmatrix} = \begin{pmatrix}u_{11}\\0\end{pmatrix} = u_{11}\begin{pmatrix}1\\0\end{pmatrix}$.
In other words, $u_{11}$ must be an eigenvalue of $\phi$ and $b_1$ must be the corresponding eigenvector. 🤔

So you take as $b_1$ the vector $\begin{pmatrix}1\\0\end{pmatrix} $ ?
 
  • #21
mathmari said:
So you take as $b_1$ the vector $\begin{pmatrix}1\\0\end{pmatrix} $ ?
Not exactly. (Shake)

We consider $b_1$ an as yet unknown vector.
The representation of that vector with respect to the basis $B$ is $\gamma_B(b_1)=\begin{pmatrix}1\\0\end{pmatrix}$.
That is, $1\cdot b_1 + 0\cdot b_2$. (Sweating)
 
  • #22
Klaas van Aarsen said:
They look correct to me. (Nod)

Using the equality $M^B_B(\phi_a)=M^E_B(\text{id}) \cdot a \cdot M^E_B(\text{id})^{-1}$ we get
\begin{align*}M^B_B(\phi_a)&=M^E_B(\text{id}) \cdot a \cdot M^E_B(\text{id})^{-1} \\ & =\begin{pmatrix}-\frac{1}{3} & \frac{4}{3} & -1 \\ \frac{5}{3} & \frac{1}{3} & \frac{2}{3} \\ \frac{1}{3} & \frac{2}{3} & -\frac{1}{3}\end{pmatrix}\cdot \begin{pmatrix}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{pmatrix}\cdot \begin{pmatrix}1 & 1 & -1 \\ 1 & 0 & 1 \\ 1 & -1 & 0\end{pmatrix}^{-1}\\ & =\begin{pmatrix}-\frac{1}{3} & \frac{4}{3} & -1 \\ \frac{5}{3} & \frac{1}{3} & \frac{2}{3} \\ \frac{1}{3} & \frac{2}{3} & -\frac{1}{3}\end{pmatrix}\cdot \begin{pmatrix}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{pmatrix}\cdot \begin{pmatrix}\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} \\ -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3}\end{pmatrix} \\ & = \begin{pmatrix}\frac{2}{9} & -\frac{1}{9} & \frac{11}{9} \\- \frac{2}{9} & \frac{13}{9} & -\frac{8}{9} \\ 0 & \frac{1}{3} & \frac{1}{3}\end{pmatrix} \end{align*}

This must be equal to \begin{equation*}\mathcal{M}_{\mathcal{B}}^{\mathcal{B}}(\phi_a)=\left (\gamma_{\mathcal{B}}\left (\phi_a(b_1)\right )\mid \gamma_{\mathcal{B}}\left (\phi_a(b_2)\right )\mid \gamma_{\mathcal{B}}\left (\phi_a(b_3)\right )\right )\end{equation*} or not? I got an other result :

We have that \begin{align*}&\phi_a(b_1)=\begin{pmatrix}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{pmatrix}\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}=\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \\ & \phi_a(b_2)=\begin{pmatrix}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{pmatrix}\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}=\begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \\ & \phi_a(b_3)=\begin{pmatrix}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{pmatrix}\begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}=\begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} \end{align*}

\begin{align*}\begin{pmatrix} \left.\begin{matrix}
\begin{matrix}1 & 1 & -1 \\ 1 & 0 & 1 \\ 1 & -1 & 0\end{matrix}
\end{matrix}\right|\begin{matrix}1 & -1 & 0 \\ 1 & 1 & -1 \\ 1 & 0 & 1\end{matrix}\end{pmatrix} \ & \overset{Z_2:Z_2-Z_1}{\longrightarrow } \ \begin{pmatrix}\left.\begin{matrix}
\begin{matrix}1 & 1 & -1 \\ 0 & -1 & 2 \\ 1 & -1 & 0\end{matrix}
\end{matrix}\right|\begin{matrix}1 & -1 & 0 \\ 0 & 2 & -1 \\ 1 & 0 & 1\end{matrix}\end{pmatrix} \ \\ & \overset{Z_3:Z_3-Z_1}{\longrightarrow } \ \begin{pmatrix}\left.\begin{matrix}
\begin{matrix}1 & 1 & -1 \\ 0 & -1 & 2 \\ 0 & -2 & 1\end{matrix}
\end{matrix}\right|\begin{matrix}1 & -1 & 0 \\ 0 & 2 & -1 \\ 0 & 1 & 1\end{matrix}\end{pmatrix} \ \\ & \overset{Z_3:Z_3-2\cdot Z_2}{\longrightarrow } \ \begin{pmatrix}\left.\begin{matrix}
\begin{matrix}1 & 1 & -1 \\ 0 & -1 & 2 \\ 0 & 0 & -3\end{matrix}
\end{matrix}\right|\begin{matrix}1 & -1 & 0 \\ 0 & 2 & -1 \\ 0 & -3 & 3\end{matrix}\end{pmatrix} \end{align*}

For $\gamma_B(\phi_a(b_1))$ we get the equations \begin{align*}c_1+c_2-c_3&= 1 \\ -c_2+2c_3&=0 \\ -3c_3&= 0\end{align*} So we get $\gamma_B(\phi_a(b_1))=\begin{pmatrix}1\\ 0 \\ 0\end{pmatrix}$. For $\gamma_B(\phi_a(b_2))$ we get the equations \begin{align*}c_1+c_2-c_3&=-1 \\ -c_2+2c_3&=\ 2 \\ -3c_3&=-3\end{align*} So we get $\gamma_B(\phi_a(b_2))=\begin{pmatrix}0\\ 1 \\ 1\end{pmatrix}$. For $\gamma_B(\phi_a(b_3))$ we get the equations \begin{align*}c_1+c_2-c_3&= \ 0 \\ -c_2+2c_3&=-1 \\ -3c_3&= \ 3\end{align*} So we get $\gamma_B(\phi_a(b_3))=\begin{pmatrix}4\\ -4 \\ -1\end{pmatrix}$. Have I done something wrong or have I understood that wrong? :unsure:
 
  • #23
Klaas van Aarsen said:
Not exactly. (Shake)

We consider $b_1$ an as yet unknown vector.
The representation of that vector with respect to the basis $B$ is $\gamma_B(b_1)=\begin{pmatrix}1\\0\end{pmatrix}$.
That is, $1\cdot b_1 + 0\cdot b_2$. (Sweating)

So $\mathcal{M}_{\mathcal{B}_1}(\phi_1)$ is a diagonal matrix and so also an upper triangular matrix if it is of the form $\begin{pmatrix}u_{11} & 0 \\ 0 & u_{22}\end{pmatrix}$.

Then we get \begin{equation*}\mathcal{M}_{\mathcal{B}_1}(\phi_1)\gamma_{\mathcal{B}_1}(b_1)=\begin{pmatrix}u_{11} \\ 0\end{pmatrix}=u_{11}\begin{pmatrix}1 \\ 0\end{pmatrix}=u_{11}\gamma_{\mathcal{B}_1}(b_1)\end{equation*}
So $u_{11}$ is an eigenvalue of $\phi$ and $b_1$ the corresponding eigenvector.

We have that \begin{equation*}\phi \begin{pmatrix}x \\ y\end{pmatrix}=\begin{pmatrix}1 & 1 \\ 1 & -1\end{pmatrix}\begin{pmatrix}x \\ y\end{pmatrix}\end{equation*}
So $u_{11}=\sqrt{2}$ and $b_1=\begin{pmatrix}1+\sqrt{2} \\ 1\end{pmatrix}$.

We also have that \begin{equation*}\mathcal{M}_{\mathcal{B}_1}(\phi_1)\gamma_{\mathcal{B}_1}(b_2)=\begin{pmatrix}0 \\ u_{22}\end{pmatrix}=u_{22}\begin{pmatrix}0 \\ 1\end{pmatrix}=u_{22}\gamma_{\mathcal{B}_1}(b_2)\end{equation*}
So $u_{22}$ is an eigenvalue of $\phi$ and $b_1$ the corresponding eigenvector.
Then $u_{22}=-\sqrt{2}$ and $b_2=\begin{pmatrix}1-\sqrt{2} \\ 1\end{pmatrix}$. Is that correct? Or can we not consider both cases (upper tridiagonal and diagonal) together? :unsure:
 
  • #24
For map $\phi_2$ we cannot do that like that :
\begin{equation*}\phi_2 \begin{pmatrix}x \\ y\end{pmatrix}=\begin{pmatrix}0 & -1 \\ 1 & 0\end{pmatrix}\begin{pmatrix}x \\ y\end{pmatrix}\end{equation*}

There are only complex eigenvalues :unsure:
 
  • #25
For the last map we have:
\begin{equation*}\phi_3 \begin{pmatrix}x \\ y\end{pmatrix}=\begin{pmatrix}0 & 1 \\ 0 & 0\end{pmatrix}\begin{pmatrix}x \\ y\end{pmatrix}\end{equation*}
So there is only one eigenvalue $u_{11}=0$ and $b_1=\begin{pmatrix}1 \\ 0\end{pmatrix}$.

:unsure:
 
  • #26
mathmari said:
Using the equality $M^B_B(\phi_a)=M^E_B(\text{id}) \cdot a \cdot M^E_B(\text{id})^{-1}$ we get
\begin{align*}M^B_B(\phi_a)&=M^E_B(\text{id}) \cdot a \cdot M^E_B(\text{id})^{-1} \\ & =\begin{pmatrix}-\frac{1}{3} & \frac{4}{3} & -1 \\ \frac{5}{3} & \frac{1}{3} & \frac{2}{3} \\ \frac{1}{3} & \frac{2}{3} & -\frac{1}{3}\end{pmatrix}\cdot \begin{pmatrix}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{pmatrix}\cdot \begin{pmatrix}1 & 1 & -1 \\ 1 & 0 & 1 \\ 1 & -1 & 0\end{pmatrix}^{-1}\\ & =\begin{pmatrix}-\frac{1}{3} & \frac{4}{3} & -1 \\ \frac{5}{3} & \frac{1}{3} & \frac{2}{3} \\ \frac{1}{3} & \frac{2}{3} & -\frac{1}{3}\end{pmatrix}\cdot \begin{pmatrix}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{pmatrix}\cdot \begin{pmatrix}\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} \\ -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3}\end{pmatrix} \\ & = \begin{pmatrix}\frac{2}{9} & -\frac{1}{9} & \frac{11}{9} \\- \frac{2}{9} & \frac{13}{9} & -\frac{8}{9} \\ 0 & \frac{1}{3} & \frac{1}{3}\end{pmatrix} \end{align*}

It should be:
$$M^B_B(\phi_a) = M^E_B(\text{id}) \cdot a\cdot M^E_B(\text{id})^{-1} = M^B_E(\text{id})^{-1} \cdot a\cdot M^B_E(\text{id})
=\begin{pmatrix}1 & 1 & -1 \\ 1 & 0 & 1 \\ 1 & -1 & 0\end{pmatrix}^{-1}\cdot \begin{pmatrix}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{pmatrix}\cdot \begin{pmatrix}1 & 1 & -1 \\ 1 & 0 & 1 \\ 1 & -1 & 0\end{pmatrix}
$$
🤔

For the record, we generally have for a vector $v$:
$$\gamma_B(\phi_a(v)) =M^B_B(\phi_a)\cdot \gamma_B(v) = M^E_B(\text{id}) \cdot a\cdot M^B_E(\text{id})\cdot \gamma_B(v)$$
That is, we start with the representation of $v$ with respect to $B$, which is $\gamma_B(v)$.
We convert it into a representation with respect to $E$ using the matrix $M^B_E(\text{id})$.
Now we can apply the matrix $a$.
The result is a vector with respect to $E$.
So we convert it back into a representation with respect to $B$ using the matrix $M^E_B(\text{id})$. 🧐

mathmari said:
So $\mathcal{M}_{\mathcal{B}_1}(\phi_1)$ is a diagonal matrix and so also an upper triangular matrix if it is of the form $\begin{pmatrix}u_{11} & 0 \\ 0 & u_{22}\end{pmatrix}$.

Is that correct? Or can we not consider both cases (upper tridiagonal and diagonal) together?
Correct. (Nod)
And yes, we can consider both cases together.

mathmari said:
For map $\phi_2$ we cannot do that like that :
\begin{equation*}\phi_2 \begin{pmatrix}x \\ y\end{pmatrix}=\begin{pmatrix}0 & -1 \\ 1 & 0\end{pmatrix}\begin{pmatrix}x \\ y\end{pmatrix}\end{equation*}

There are only complex eigenvalues
Indeed.
So what can we conclude? 🤔

mathmari said:
For the last map we have:
\begin{equation*}\phi_3 \begin{pmatrix}x \\ y\end{pmatrix}=\begin{pmatrix}0 & 1 \\ 0 & 0\end{pmatrix}\begin{pmatrix}x \\ y\end{pmatrix}\end{equation*}
So there is only one eigenvalue $u_{11}=0$ and $b_1=\begin{pmatrix}1 \\ 0\end{pmatrix}$.
What does that mean for the question in the OP? 🤔
 
  • #27
Klaas van Aarsen said:
Correct. (Nod)
And yes, we can consider both cases together.

So we have a basis for both cases, for an upper tridiagonal matrix and a diagonal matrix.
Klaas van Aarsen said:
Indeed.
So what can we conclude? 🤔

That means that there is no basis so that we get a diagonal matrix, right? But what about a tridiagonal matrix? :unsure:

Klaas van Aarsen said:
What does that mean for the question in the OP? 🤔

That means that there is no basis so that we get a diagonal matrix, right? But what about a tridiagonal matrix? :unsure:
 
  • #28
mathmari said:
That means that there is no basis so that we get a diagonal matrix, right? But what about a tridiagonal matrix?

Did you you mean upper triangular instead of tridiagonal? 🤔

We needed a real eigenvalue for an upper triangular matrix, didn't we?
Or alternatively, we can find a solution for $-2x_1 y_1 -y_1^2+x_1^2=0$.
We can solve it as a quadratic equation with respect to $x_1$ can't we? 🤔
mathmari said:
That means that there is no basis so that we get a diagonal matrix, right? But what about a tridiagonal matrix?
Upper triangular instead of tridiagonal?

We found that we needed a real eigenvalue and its eigenvector to ensure the lower left matrix entry becomes $0$.
What else do we need? 🤔
 
  • #29
Klaas van Aarsen said:
Did you you mean upper triangular instead of tridiagonal? 🤔

We needed a real eigenvalue for an upper triangular matrix, didn't we?
Or alternatively, we can find a solution for $-2x_1 y_1 -y_1^2+x_1^2=0$.
We can solve it as a quadratic equation with respect to $x_1$ can't we? 🤔

Oh yes, I mean upper triangular matrix not tridiagonal.

Since there only complex roots, there is no basis such that the matrix $M$ is a diagonal nor an upper triangular matrix, right?
Klaas van Aarsen said:
We found that we needed a real eigenvalue and its eigenvector to ensure the lower left matrix entry becomes $0$.
What else do we need? 🤔

So can we consider any other vector as $b_2$, that is linearly independent to $b_1$, so that the matrix $M$ has the desired form?:unsure:
 
Last edited by a moderator:
  • #30
mathmari said:
Since there only complex roots, there is no basis such that the matrix $M$ is a diagonal nor an upper triangular matrix, right?

So can we consider any other vector as $b_2$, that is linearly independent to $b_1$, so that the matrix $M$ has the desired form?
Yes and yes. (Nod)

And we should verify that the matrix actually does get the desired form. (Sweating)
 

Similar threads

Replies
8
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 52 ·
2
Replies
52
Views
4K