maverick280857
- 1,774
- 5
Hi,
I'm reading Appendix 1 of Section N2 (Gluon Scattering) in "Quantum Field Theory in a Nutshell" by Anthony Zee. The generators for SU(N) have the usual algebra
[T^a, T^b] = i \epsilon^{a b c}T^c
Suppose we adopt the following normalization
\text{tr}(T^a T^b) = \frac{1}{2}\delta^{a b}
Then, we have
\text{tr}([T^a, T^b]T^c) = \text{tr}(i f^{a b e} T^{e} T^{c}) = i f^{a b e}\text{tr}(T^e T^c) = \frac{i f^{a b e} \delta^{e c}}{2} = \frac{i f ^{a b c}}{2}
so that
f^{a b c} = - 2 i \text{tr}([T^a, T^b]T^c)
Also,
\text{tr}([T^a, T^b][T^c, T^d]) = \text{tr}(i f^{a b \alpha} T^{\alpha} i f ^{c d \beta} T^{\beta}) = -f^{a b \alpha} f^{c d \beta}\text{tr}(T^\alpha T^\beta) = -\frac{1}{2}f^{a b e} f^{c d e}
which implies that
f^{a b e} f^{c d e} = -2 \text{tr}([T^a, T^b][T^c, T^d])
However, the author explicitly states that
f^{a b e} f^{c d e} = -4 \text{tr}([T^a, T^b][T^c, T^d])
I don't get this additional factor of 2. What am I missing? Is there an error somewhere?
Thanks in advance!
I'm reading Appendix 1 of Section N2 (Gluon Scattering) in "Quantum Field Theory in a Nutshell" by Anthony Zee. The generators for SU(N) have the usual algebra
[T^a, T^b] = i \epsilon^{a b c}T^c
Suppose we adopt the following normalization
\text{tr}(T^a T^b) = \frac{1}{2}\delta^{a b}
Then, we have
\text{tr}([T^a, T^b]T^c) = \text{tr}(i f^{a b e} T^{e} T^{c}) = i f^{a b e}\text{tr}(T^e T^c) = \frac{i f^{a b e} \delta^{e c}}{2} = \frac{i f ^{a b c}}{2}
so that
f^{a b c} = - 2 i \text{tr}([T^a, T^b]T^c)
Also,
\text{tr}([T^a, T^b][T^c, T^d]) = \text{tr}(i f^{a b \alpha} T^{\alpha} i f ^{c d \beta} T^{\beta}) = -f^{a b \alpha} f^{c d \beta}\text{tr}(T^\alpha T^\beta) = -\frac{1}{2}f^{a b e} f^{c d e}
which implies that
f^{a b e} f^{c d e} = -2 \text{tr}([T^a, T^b][T^c, T^d])
However, the author explicitly states that
f^{a b e} f^{c d e} = -4 \text{tr}([T^a, T^b][T^c, T^d])
I don't get this additional factor of 2. What am I missing? Is there an error somewhere?
Thanks in advance!
Last edited: