Gravitational field of a hollow sphere

AI Thread Summary
The discussion focuses on the calculation of the area of a thin ring on a hollow sphere, specifically addressing the formula 2πasinθ ds. Participants clarify that the ring can be viewed as a trapezoid, but emphasize that the height used in the area calculation should be ds sinθ, not ds. The conversation highlights the importance of visualizing the infinitesimal strip correctly, noting that ds is perpendicular to the edges of the strip, allowing for a straightforward area calculation as a rectangle. The integration of the area element over θ from 0 to π is suggested to confirm the total surface area of the sphere. The key takeaway is the correct interpretation of geometric relationships in the context of the hollow sphere's gravitational field.
Rikudo
Messages
120
Reaction score
26
Homework Statement
-
Relevant Equations
-
Screenshot_2022-09-10-08-11-58-36.png

Why the area of the thin rings are ##2πasin\theta \, ds##? (a is the radius of the hollow sphere)

If we look from a little bit different way, the ring can be viewed as a thin trapezoid that has the same base length ( ##2πa sin\theta##), and the legs are ## ds##.
The angle between the leg and the lower base is ##90-\theta##. Hence,we can conclude that the height of the trapezoid is ##ds \, sin\theta##.

Since the base length is more or less the same, the area is just base x height.
This means, the area is :##2πa sin\theta \, ds \, sin \theta##.
 
Physics news on Phys.org
Why don't you substitute ##ds=a~d\theta##, then integrate your area element over ##\theta## from ##0## to ##\pi##. Do you get ##4\pi a^2## for the area of the shell?
 
kuruman said:
Why don't you substitute ##ds=a~d\theta##, then integrate your area element over ##\theta## from ##0## to ##\pi##. Do you get ##4\pi a^2## for the area of the shell?
Yes.

But, ##ds## is not the height of the trapezoid. So, in my opinion, we are not supposed to multiply this with the ##2πa sin\theta## to get the area.
 
Rikudo said:
the height of the trapezoid is dssinθ.
Sure, but the height of the trapezoid is not what you need. A wall length L and height H has area LH. If it then leans over at angle θ it still has area HL, not HL cos(θ).
 
  • Like
Likes Rikudo, kuruman, Orodruin and 1 other person
haruspex said:
A wall length L and height H has area LH. If it then leans over at angle θ it still has area HL, not HL cos(θ)
Umm... well, it is is true, but what is the relation of it with the area of ring?

haruspex said:
but the height of the trapezoid is not what you need.
Why, though? We can't use ##ds## as its height since it is not perpendicular to the bases.
 
Rikudo said:
Why, though? We can't use ##ds## as its height since it is not perpendicular to the bases.
@Rikudo, I suspect your difficulty arises because you are not 'visualising' the infinitessimal 3D strip correctly.

The line element ##ds## is perpendicular to both the inner and outer edges of the strip. That means the (infinitessimal) strip has the same area as a rectangle measuring ##2\pi a \sin \theta## by ##ds##.
 
  • Like
Likes Rikudo and erobz
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top