Gravitational potential of an ellipsoid

Click For Summary
SUMMARY

The gravitational potential outside a homogeneous ellipsoid of density μ is expressed by the formula: φ = -πμabc∫(1 - (x²/(a²+s)) - (y²/(b²+s)) - (z²/(c²+s))) (ds/Rs), where Rs = √((a²+s)(b²+s)(c²+s)). This formula is derived using the mass quadrupole tensor Qαβ and involves multipole expansion techniques. The discussion highlights the derivation steps and potential errors in the formulation, specifically regarding the signs in the integral expression.

PREREQUISITES
  • Understanding of gravitational potential theory
  • Familiarity with multipole expansion in physics
  • Knowledge of tensor calculus, particularly mass quadrupole tensors
  • Experience with coordinate transformations in three-dimensional space
NEXT STEPS
  • Study the derivation of gravitational potentials for various geometries, focusing on ellipsoids
  • Learn about the application of multipole expansion in gravitational fields
  • Explore the mathematical techniques for integrating over ellipsoidal volumes
  • Review the implications of axial symmetry in gravitational calculations
USEFUL FOR

Physicists, mathematicians, and engineers involved in gravitational modeling, particularly those focusing on celestial mechanics and potential theory.

ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,100
Reaction score
1,387
There is a formula for the potential ##\varphi## outside of a homogenous ellipsoid of density ##\mu## in Landau\begin{align*}
\varphi = -\pi \mu abck \int_{\xi}^{\infty} \left(1- \dfrac{x^2}{a^2 + s} + \dfrac{y^2}{b^2 + s} + \dfrac{z^2}{c^2+s} \right) \frac{ds}{R_s} \ \ \ (1)
\end{align*}where ##R_s = \sqrt{(a^2+s)(b^2+s)(c^2+s)}## and ##\xi## satisfies ## \dfrac{x^2}{a^2 + \xi} + \dfrac{y^2}{b^2 + \xi} + \dfrac{z^2}{c^2+\xi} = 1##. How is this formula obtained?

So far I can only find an expression in the limit of ##r \gg a,b,c##. The mass quadrupole tensor is ##Q_{\alpha \beta} = \displaystyle{\int_{\mathcal{V}}} \mu(3x_{\alpha} x_{\beta} - r^2 \delta_{\alpha \beta}) dV## therefore the potential at a point ##\mathbf{r}## has a multipole expansion ##\varphi(\mathbf{r}) = - \dfrac{km}{r} + \dfrac{1}{6} Q_{\alpha \beta} \partial^2_{\alpha \beta} \dfrac{1}{r} + \mathrm{etc}##. Due to the axial symmetry, the matrix ##Q## can be brought to diagonal form by aligning the coordinate system with the principal axes and the non-zero components are\begin{align*}
Q_{xx} &= \mu \int_{\mathcal{V}} d^3 x (2x^2 - y^2 - z^2)\\
&= \mu abc \int_0^{2\pi} d\phi \int_0^{\pi} d\theta \int_0^1 dr\, r^4 ([2a^2 \cos^2{\phi} - b^2 \sin^2{\phi}]\sin^3{\theta} - c^2 \cos^2{\theta} \sin{\theta} ) \\
&= \dfrac{\mu abc}{5} \int_0^{2\pi} d\phi \int_0^{\pi} d\theta \, ([2a^2 \cos^2{\phi} - b^2 \sin^2{\phi}]\sin^3{\theta} - c^2 \cos^2{\theta} \sin{\theta} ) \\
&= \dfrac{2\mu abc}{15} \int_0^{2\pi} d\phi \, (4a^2 \cos^2{\phi} - 2b^2 \sin^2{\phi} - c^2 ) \\
&= \dfrac{4\pi \mu abc}{15} (2a^2 - b^2 - c^2 )
\end{align*}where the "spherical-like" coordinate transformations ##x = ar\sin{\theta} \cos{\phi}##, etc. map the ellipsoid into the unit sphere. Similarly ##Q_{yy} = \dfrac{4\pi \mu abc}{15} (2b^2 - a^2 - c^2 )## and ##Q_{zz} = \dfrac{4\pi \mu abc}{15} (2c^2 - a^2 - b^2 )##. Now\begin{align*}
\partial_{\beta} \dfrac{1}{r} &= - \dfrac{1}{r^2} \cdot \dfrac{1}{2r} \partial_{\beta} r^2 = -\dfrac{1}{2r^3} \partial_{\beta} (x_{\gamma} x_{\gamma}) = -\dfrac{x_{\beta}}{r^3} \\ \\
\implies \partial^2_{\alpha \beta} \dfrac{1}{r} &= -\partial_{\alpha} \dfrac{x_{\beta}}{r^3} = -\frac{1}{r^3} \delta_{\alpha \beta} + \frac{3x_{\alpha} x_{\beta}}{r^5} = \frac{3x_{\alpha} x_{\beta} - r^2 \delta_{\alpha \beta}}{r^5}
\end{align*}therefore ##\partial^2_{xx} \dfrac{1}{r} = \dfrac{2x^2 - y^2 -z^2}{r^5}## and etc. therefore \begin{align*}
\varphi(\mathbf{r}) &= -\dfrac{km}{r} + \dfrac{2\pi \mu abc}{45 r^5} \left\{ (2a^2 - b^2 - c^2 )(2x^2 - y^2 -z^2) + \mathrm{y \ \ first} + \mathrm{z \ \ first} \right\} \\
&= -\dfrac{km}{r} + \dfrac{2\pi \mu abc}{45 r^5} \left\{ 6(a^2 x^2 + y^2b^2 + c^2 z^2) -3((b^2+c^2)x^2 + (a^2+c^2)y^2 + (a^2+b^2)z^2) \right\}
\end{align*}I haven't checked yet if this is consistent with ##(1)## as ##r## gets very big, but I'm more interested to know how Landau derived the exact expression?
 
  • Like
Likes   Reactions: LCSphysicist and vanhees71
Physics news on Phys.org
Golly, that was fast! Looks like exactly it, thanks.
 
Is it possible that it should be (minus signs wrong in eq 1 from ergospherical):

## \varphi = -\pi \mu abc \int_{\xi}^{\infty} \left(1- \dfrac{x^2}{a^2 + s} - \dfrac{y^2}{b^2 + s} - \dfrac{z^2}{c^2+s} \right) \frac{ds}{R_s} ##

The same error is present in equation (72) the document from Stanford above, but not in equation (3).
 

Similar threads

  • · Replies 33 ·
2
Replies
33
Views
3K
  • · Replies 42 ·
2
Replies
42
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
5
Views
1K
  • · Replies 22 ·
Replies
22
Views
4K
Replies
3
Views
1K
  • · Replies 12 ·
Replies
12
Views
2K
Replies
46
Views
4K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 15 ·
Replies
15
Views
1K