Gravity /electromagnetism /measuring

  • Thread starter Thread starter forcecarrier
  • Start date Start date
  • Tags Tags
    Gravity
forcecarrier
Messages
2
Reaction score
0
had a thought experiment like this , a lorry is on a weighbridge inside is a 100kg weight surrounded above and below by 2 perfectly calibrated electromagnets, when the the magnets are switched on the weight is suspended in mid air ,does the lorry weigh 100kg less and does the above magnet need slightly more power than the one below assuming both are pulling toward ? hope this isn't too stupid!
 
Physics news on Phys.org
The lorry weighs the same.
 
what about if the lorry is full of seagulls and one moment they are all at rest then on the weighbridge they all hover in midair , same weight ?
 
Yes, of course. Btw, Mythbusters did an excellent show on that myth, confirming the physics.
 
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
Thread 'Dirac's integral for the energy-momentum of the gravitational field'
See Dirac's brief treatment of the energy-momentum pseudo-tensor in the attached picture. Dirac is presumably integrating eq. (31.2) over the 4D "hypercylinder" defined by ##T_1 \le x^0 \le T_2## and ##\mathbf{|x|} \le R##, where ##R## is sufficiently large to include all the matter-energy fields in the system. Then \begin{align} 0 &= \int_V \left[ ({t_\mu}^\nu + T_\mu^\nu)\sqrt{-g}\, \right]_{,\nu} d^4 x = \int_{\partial V} ({t_\mu}^\nu + T_\mu^\nu)\sqrt{-g} \, dS_\nu \nonumber\\ &= \left(...
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Back
Top