Thaakisfox
- 263
- 0
Suppose \phi is a scalar function: R^n\to R, and it satisfies the Poisson equation:
\nabla^2 \phi=-\dfrac{\rho}{\varepsilon_0}
Now I want to calculate the following integral:
\int \phi \nabla^2 \phi \,dV
So using Greens first identity I get:
\int \phi \nabla^2 \phi \,dV = \oint_S \phi \nabla \phi d\vec A -\int |\nabla \phi|^2 dV
Where S is some closed surface.
Now when we are calculating the electrostatic potential energy, we have to calculate exactly this integral, but we know the end, that:
W=-\dfrac{\varepsilon_0}{2}\int \phi \nabla^2 \phi \,dV =\dfrac{\varepsilon_0}{2}\int |\nabla \phi|^2 dV
So what I am wondering is why will, this be true:
\oint_S \phi \nabla \phi d\vec A=0
If \phi satisfies the Poisson equation??
\nabla^2 \phi=-\dfrac{\rho}{\varepsilon_0}
Now I want to calculate the following integral:
\int \phi \nabla^2 \phi \,dV
So using Greens first identity I get:
\int \phi \nabla^2 \phi \,dV = \oint_S \phi \nabla \phi d\vec A -\int |\nabla \phi|^2 dV
Where S is some closed surface.
Now when we are calculating the electrostatic potential energy, we have to calculate exactly this integral, but we know the end, that:
W=-\dfrac{\varepsilon_0}{2}\int \phi \nabla^2 \phi \,dV =\dfrac{\varepsilon_0}{2}\int |\nabla \phi|^2 dV
So what I am wondering is why will, this be true:
\oint_S \phi \nabla \phi d\vec A=0
If \phi satisfies the Poisson equation??