Suppose [tex]\phi[/tex] is a scalar function: [tex]R^n\to R[/tex], and it satisfies the Poisson equation:(adsbygoogle = window.adsbygoogle || []).push({});

[tex]\nabla^2 \phi=-\dfrac{\rho}{\varepsilon_0}[/tex]

Now I want to calculate the following integral:

[tex]\int \phi \nabla^2 \phi \,dV[/tex]

So using Greens first identity I get:

[tex]\int \phi \nabla^2 \phi \,dV = \oint_S \phi \nabla \phi d\vec A -\int |\nabla \phi|^2 dV [/tex]

Where S is some closed surface.

Now when we are calculating the electrostatic potential energy, we have to calculate exactly this integral, but we know the end, that:

[tex]W=-\dfrac{\varepsilon_0}{2}\int \phi \nabla^2 \phi \,dV =\dfrac{\varepsilon_0}{2}\int |\nabla \phi|^2 dV [/tex]

So what I am wondering is why will, this be true:

[tex]\oint_S \phi \nabla \phi d\vec A=0[/tex]

If [tex]\phi[/tex] satisfies the Poisson equation??

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Green identity, poisson equation.

**Physics Forums | Science Articles, Homework Help, Discussion**