I'm slightly confused by definition of normalises.(adsbygoogle = window.adsbygoogle || []).push({});

It's shown in my notes that for two subgroups H, K of G we have

[itex] [H,K]^{h_1} ≤ [H,K] [/itex] for all [itex] h_1 [/itex] in [itex] H [/itex]

and then it says

"and so [itex] H [/itex] normalises [itex] [H,K] [/itex]."

It hasn't been fully introduced to me what a subgroup normalising another subgroup means. But a bit of searching around shows H normalises [H,K] means that [itex] [H,K]^{h} = [H,K] [/itex] for all h in H.

Clearly [itex] [H,K]^{h} \subseteq [H,K] [/itex] from above. But showing [itex] [H,K]^{h} \supseteq [H,K] [/itex] I can't seem to work out.

I've tried myself, I've looked around. Even wikipedia explains it;

http://groupprops.subwiki.org/wiki/Subgroup_normalizes_its_commutator_with_any_subset

But I can't understand how [a,h] is a generating set for H, and even if it was how that goes on to help the proof anyway.

Can anyone shed some light my way?

Edit: I apologise for not realising this should be posted in the HW section.

I may have found my own proof if anyone doesn't mind reading it.

To show [itex] [H,K] \subseteq [H,K]^{h} [/itex] amounts to showing that for any [itex] a \in [H,K] [/itex] we have [itex] a \in [H,K]^h [/itex]

This amounts to showing there exists [itex] b \in [H,K] [/itex] such that

[itex] a = h^{-1} b h [/itex]

Equivalent to showing that

[itex] b = hah^{-1} = a^{h^{-1}}[/itex] is an element of [itex] [H,K] [/itex]

By definition

[itex] [H,K] = <[h,k] | h \in H, k \in K> [/itex]

By noting that [itex] [h_m,k_m]^{-1} [/itex] can be written in the form of [itex][h_j,k_j][/itex], [itex] a [/itex] can written in the form

[itex] a = [h_1 , k_1][h_2,k_2]...[h_n,k_n] [/itex]

[itex] a^{h^{-1}} = [h_1 , k_1]^{h^{-1}}[h_2,k_2]^{h^{-1}}...[h_n,k_n]^{h^{-1}}[/itex]

It is easily shown that any [itex][h_j, k_j]^{h}[/itex] for [itex] h \in H [/itex] is an element of [itex] [H,K] [/itex] and hence as [itex][H,K][/itex] is a group, [itex] a^{h^{-1}} \in [H,K] [/itex]

There's probably a shorter proof, because the wikipedia page makes it seem like it's about 1 lines worth.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# H normalises [H,K]?

Can you offer guidance or do you also need help?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**